r

Introduction to z-Tree

Design: Urs Fischbacher

Programming: Urs Fischbacher & Stefan Schmid
This slides by Ernesto Reuben

How well do you know zTree?

. Never used it

. Played with it a bit

. Used it to run experiments

. Used it to program and run experiments

zTree online support

=" zTree hompage:

— http://www.iew.uzh.ch/ztree/index.php
= zTree Wiki

— https://www.uzh.ch/iew/ztree/ssl-dir/wiki/
= zTree mailing list

— go to https://lists.uzh.ch/iew.lists.uzh.ch/sympa/info/ztree
and click on the ‘Subscribe’ link

http://www.iew.uzh.ch/ztree/index.php
https://www.uzh.ch/iew/ztree/ssl-dir/wiki/
https://lists.uzh.ch/iew.lists.uzh.ch/sympa/info/ztree

C;% zTree components

Treatment

= Arranged in a tree structure (the
stage tree)

General Parameters

= One background stage

. Murnber of subjects 0K
— Set number of subjects, Number ngr'm - | |

groups, periods, exchange rate Cancel

practice penods

paving penods
— Default screens paying p

. Exch. rate [Fr./ECL]
— Treatment variables

Lump zum payment [ECL]
= Any number of normal stages Show up fee [

Bankmptoy rules. . |

— Each stage corresponds
(roughly) to one screen

Cormpatibility

[first boses on top

Options
[without Autoscope

C;% zTree components

B4 Background
Stage £ globals

o E 5P subjects
= Properties £ summary
&) contracts

— When does it start and end --g
-7 logfile

= Programs’ézz} =3 eg globals.do{ .}

A=T;

Set and change variables - B=2
b Pa=07%

= Two screens Lﬂaxc 13[;
i rNZe

Active: for input and display (=] u@mwescreen
- Waltlng. dISplay Only Ij EID Waitingscreen

== Text

— Screens COntaIn boxes .. Please wait until the experiment continues,
. . - & Voting =|= (30)

that INn turn contain 'ég subjects.do { Type = if(random() < Pa, A, B); ...}
'ég subjects.do { Ma = count{Type==A); ... }

— items and buttons=1 £ Active screen

=-[=9 Standard

-0 Your type is: OUT(Type)

-0 Your cost of voting s OUT{C)

-0 Murnber of voters of type A OUT(MNa)
-0 Murnber of voters of type B OUT{ M)
-0 Weuld you like to vote for your type or to abstain®: IN[Vote)
.= 0K

-J_] Waitingscreen

C;% zTree components

Ta b I es T3 subjects table O] x|

Feriod Subject Fraofit [TotalProfit Padicipate

= Data are stored in tables. Mostly in

— subjects table

— One row per subject £ globals table

— gIObaIS table Period [NumPeriods [RepeatTreatment
1 1 1]

— One row per treatment
(i.e., same value for all
subjects)

— A new subjects table and a new = Programs are executed at the

globals table are created in beginning of a stage or when
every period buttons are clicked

Programs

= Other tables — Calculations are done by z-Tree

. and then sent to the z-Leafs
— summary, contracts, session,

and logfile — Programs are executed row by
row in the table they are called
(i.e. subject by subject in the
subjects table)

— Other tables can be accessed
with the table.tablefunction

o

Boxes

= Box =rectangular area of the screen
containing stuff

= They are positioned over each other

— standard box, header box, help

box, grid box, history box, chat
box, plot box

zTree components

Positioning boxes

Distances can be set as % of the
screen or in pixels

Standard Box

Adjuzstment of the remaining box
Cancel

[top
[left [right
[battom

Mame |Gtandard

Width [p/%]
Height b/ [0z

[V with Frame

Distance to the margin [pe]

200p

[100p |

I—
Diizplay

condition

Buttans Paosition
i i i

Arrangement

™ Inmows
i i i

" In columnz
i i s

Display condition

= Makes boxes appear (when true) or
disappear (when false)

C;c)e zTree components

Boxes Useful tip

= Box =rectangular area of the screen ll = Use container boxes
containing stuff — rectangular area containing
= They are positioned over each other other boxes

— standard box, header box, help — lets you move many boxes at the

box, grid box, history box, chat same time and keep things in
box, plot box place with different resolutions

800p R

A

zTree components

Period 1
Mumber of remaining dividend payments: 10
MNumber of remaining shares: 2

Amount of remaining cash:; $41.00

10 seconds left!

= EZCTTE

Lowest Offer Highest Bid
$11.00 $10.00

You sold a share for $11.00

Open Offers to Sell Open Bids to Buy

Submit Offer to Sell I 12 §11.00 $10.00

Make an offer to sell

Your current offer: Mo offer yet

Withdraw Offer

Submit Bid to Buy I

Make a bid to buy

Your current bid: Mo bid yet

C;% How to build a test environment

Unzip zTreeMaterials.zip into a folder.
= Can be found at http://ereuben.net/teach/zTreeMaterials.zip

Open zTree with the batch file: “openztree.bat”

Open the file: “Open Zleafs.exe”

= Set as many zLeafs as
necessary A opan sLeahs

Mumber of zLeafs Starting Mumber

" |f needed, change screen
resolution and other
options

Screen Resolution [1024 :“,:|?EE Farnt

| Full zscreen

Server IP addres=

Open zLeafs

v v computer

Fathto zleafexe |nogramstelesf. exe

C;% Exp. 1: Rational turnout

Voters are randomly selected to prefer A or B

" Probability of preferring a p, > %

Voters can vote for A, B, or abstain

" They get 100 if their preference wins and 0 otherwise
= Voting is costly: costs are drawn from a uniform

distribution ¢, € [0, 50]
To have a function al program we need:
= Set variables in the background stage
= Two other stages

— Voting stage: voters are told their preference and make their
decision

— Result stage: voters are informed of the election’s outcome

C;% Creating variables

Variables are defined the first time they are referenced
in a table

— They are always a real number

Defining treatment variables in the background stage:

globals.do{
A=1;
B=2;
Pa=0.75;
MaxC = 50;
Prize = 100;

There is a good number of functions that can be used for
programming:

Draw types and costs:

subjects.do{

Type = if(random() < Pa, A, B);
C = round(random() * MaxC, 1);

C;% Table functions

Syntax 1: table function(expression)

" e.g. number of voters and the average cost of voting:
subjects.dof
N = count();
AvgC = average(C);
}

Syntax 2: table function(condition, expression)

= e.g. number of As and the average cost of voting for As:
subjects.dof

Na = count(Type==A);
AvgCa = average(Type==A, C);

C;% Table functions

Programs are run sequentially per row
subjects.do{
Type = if(random() < Pa, A, B);
C = round(random() * MaxC, 1);
Na = count(Type==A);

Nb = count(Type==B);

Incorrect!

C;% Table functions

Programs are run sequentially per row
subjects.do{
Type = if(random() < Pa, A, B);
C = round(random() * MaxC, 1);

}

subjects.dof
Na = count(Type==A);

Nb = count(Type==B);

C;% Input and output of variables

Items are used for the input and output of variables

= Label (text displayed)
Variable (for input or output)
Layout:

— numbers — radio buttons

— check boxes - sliders

— scrollbars — text

Note

If the item is used for input
we also need a button

[Shaow value [value of variabl

[Empty allowed

Drefault |

C;% Input and output of variables

Variables integrated into text

" |f instead of displaying “Your type is: A” you want to
display “If A wins you earn 100 points but if B wins you
earn O points” then type the following in the label box

<>|f <Type | !text: A="“A”; B=“B”;> wins you earn 100 points
but if <Type | ltext: A="“B”; B=“A”;> wins you earn 0 points

RTF is supported so you can do a lot of stuff
" To display “Your profit in this period was =5.00 points”
where the profits are bold only when negative then type

<>{\rtf Your \i profit \iO in this period was
<Profit | Itext: 1=""; —1="\b ”;><Profit |0.01> points
<Profit | ltext: 1=""; —1=“\b0 ”;>}

C;% globals table

Use the globals table when a variable is the same value
for all subjects

globals.do{
Tiebreak = if(random()<0.5, A, B);

}

subjects.dof
Votesa = count(Vote==1 & Type==A);
Votesb = count(Vote==1 & Type==B);

Winner = if(Votesa > Votesb, A, 0) + if(Votesa < Votesb, B, 0)
+ if(Votesa == Votesb, Tiebreak, 0);

Profit = MaxC + if(Winner == Type, Prize, 0) - C*Vote;

In most experiments subjects are divided into groups

Let’s redo the rational turnout experiment but with
random allocation of voters to groups of 5 and then

= Voters are randomly selected to prefer A or B
— Probability of preferringa p, > %
= \/oters can vote for A, B, or abstain

— They get 100 if their preference wins and 0 otherwise

— Voting is costly: drawn from a uniform distribution
¢, € [0, 50]

The variable Group determines the group matching

"= The number of groups can be set in the background
stage

There are menu commands for different types of
matchings (treatment menu):

= Partner

= Stranger

" absolute Stranger

= typed absolute Stranger
Important:

= Before running an experiment, check the parameter
table (treatment menu)

The Group variable can also be changed:

= Manually in the parameter table
— Double-click on each cell and set group

" Through a program in the background stage, e.g.,
subjects.dof
Group = 1;
Group = if(Subject >= 6 & Subject <= 15, 2, Group);
Group = if(Subject > 15, 3, Group);

C;% Common matching protocols

= Partners in groups of size N, e.g. N = 4:
globals.do{
N =4;
}
subjects.do{
Group = roundup(Subject / N, 1);
}

C;% Common matching protocols

= Strangers in groups of size N, e.g. N = 4:
globals.do{
N =4;
}
subjects.do{
RndNum = random();
}
subjects.do{
Group = roundup(count(RndNum <= :RndNum) / N, 1);

}

C;% Common matching protocols

= Strangers within matching groups of size M and in groups of size
N,eg. M=10& N = 2:
globals.dof{
M = 10;
N=2;
}
subjects.do{
MatchGroup = roundup(Subject / M, 1);
RndNum = random() + MatchGroup;
}
subjects.do{
Group = roundup(count(RndNum <= :RndNum) / N, 1);

C;% same() function

same() is the table function used to make group
calculations

= e.g. to count the total number of voters, the number of
A voters and the number of B voters within each group

subjects.dof
N = count(same(Group));
Na = count(same(Group) & Type==A);
Nb = count(same(Group) & Type==B);

C;% Scope operator

“.,n

Alternatively, one can use the scope operator “:

subjects.do{
N = count(Group == :Group);
Na = count(Group == :Group & Type==A);
Nb = count(Group == :Group & Type==B);

C;% Scope operator

Scope operator gives you more flexibility

= e.g. rank voters in the group according to their cost

subjects.dof
RankC = count(same(Group) & C <= C);

Incorrect!

subjects.dof{
RankC = count(same(Group) & C <= :C);

Correct!

C;% Exp. 2: An ultimatum game

Subjects are matched in pairs
= Each pair has 1 proposer and 1 responder

" Proposers offer responders x points from y available
points

= Responders can accept or reject the offer
— |If the responder accepts:
— Proposers earn: m, =y — x
— Responders earn: i1, = x
— If the responder rejects:
— Both earn O points

Play for t periods

= Random matching and random assignment of roles

C;% Assigning types

Player types can be assigned by programming them
" e.g., to randomly allocate one proposer and one responder
per pair
subjects.dof
RndNum = random();

)

subjects.do{

RndOther = find(same(Group) & not(same(Subject)),
RndNum);

Proposer = if(RndOther > RndNum, 1, 0);

}
Or ... use the parameter table (less flexible)

" period parameters, subject parameters, period x subject
parameters

C;% Common matching protocols

= Typed partners in groups of size N and with N types of players
where each group has one player of each type and types are
constant across periods, e.g. N = 2:
globals.dof
N=2;
}
subjects.do{
Group = roundup(Subject / N, 1);
Type = mod(Subject - 1, N) + 1;

C;% Common matching protocols

= Typed partners in groups of size N and with N types of players
where each group has one player of each type and types are
randomly redrawn every period, e.g. N = 2:
globals.dof
N=2;
}
subjects.do{
RndNum = random();
Group = roundup(Subject / N, 1);
}
subjects.do{
Type = mod(count(same(Group) & RndNum <= :RndNum) - 1, N) + 1;

C;% Common matching protocols

= Typed strangers in groups of size N and with N types of players
where each group has one player of each type and types are
randomly redrawn every period, e.g. N = 2:
globals.dof
N=2;
}
subjects.do{
RndNum = random();
}
subjects.do{
Group = roundup(count(RndNum <= :RndNum) / N, 1);
}
subjects.do{
Type = mod(count(same(Group) & RndNum <= :RndNum) - 1, N) + 1;

C;% Common matching protocols

= Typed strangers in groups of size N and with N types of players
where each group has one player of each type and types are
constant every period, e.g. N = 2:
globals.do{
N=2;
NG = subjects.maximum(Subject) / N;
}
subjects.dof
Type = mod(Subject - 1, N) + 1;
RndNum = random();
}
subjects.dof

Group = mod(count(same(Type) & RndNum <= :RndNum) - 1, NG) +
1,

C;% Common matching protocols

= Typed strangers within matching groups of size M in groups of size N and with
N types of players where each group has one player of each type and types are
randomly redrawn every period, e.g. M =10 & N = 2:
globals.do{
M = 10;
N=2;
}
subjects.dof{
MatchGroup = roundup(Subject / M, 1);
RndNum = random() + MatchGroup;
}
subjects.dof
Group = roundup(count(RndNum <= :RndNum) / N, 1);
}
subjects.dof{
Type = mod(count(same(Group) & RndNum <= :RndNum) - 1, N) + 1;

C;% Common matching protocols

= Typed strangers within matching groups of size M in groups of size N and with
N types of players where each group has one player of each type and types are
constant every period, e.g. M =10 & N = 2:
globals.do{
M =10;
N =2;
NG = subjects.maximum(Subject) / N;
}
subjects.dof
MatchGroup = roundup(Subject / M, 1);
Type = mod(count(same(MatchGroup) & Subject <=: Subject) - 1, N) + 1;
RndNum = random() + MatchGroup;
}
subjects.dof{
Group = mod(count(same(Type) & RndNum <= :RndNum) - 1, NG) + 1;

C;% Sequential vs. simultaneous screens

Rational turnout Ultimatum game

Voting decision Proposer offer waiting

Responder

waitin
& acceptance

Profit display Proposer profit Responder
display profit display

,@ Participate

° o« o - +- > Background
The variable Participate determines -\ & Proposer =|= (SN

- % subjects.do ... }
who enters a stage Rand = random)
- % subjects.do ... }

. P —_ RandOther = find(same(Group) & not(=3
. Enter Stage' PartICIpate - 1 Proposer = if{ RandQOther = Rand, 1, 0);

. . . . _ Fartidpate =if{ Proposer == 1, 1, 0J;
= Skip stage: Participate = 0. - [@) Active sereen
= Standard
11 You are a proposer.
O The total amount of points to divide a
M How many points do you offer to the
[Ready
D Waitingscreen

For the ultimatum game use either -1 & Responder =|= (O)N

L. . - % subjects.do { ... }
= Participate = if (Proposer ==1, 1, 0); Particpate = f(Proposer == 0, 1, 0);
Qffer = find{ same{ Group) & Proposer
= Participate = if (Proposer ==0, 1, 0); = [[a Active screen
- Standard
O You are a responder,
M The total amount of points to divide a
[Points offered to you by the propose
[Do you accept or reject the offer?; I
[Ready
D Waitingscreen
- Profit Display =]= (30)N
- % subjects.do ... }
Accept = find(same(Group) & Proposer
Profit = Accept * if{ Proposer == 1, Pie -
- IE Active screen
¥ Standard
Ij Waitingscreen

= At every stage, Participate resetsto 1

C;% Exp. 3: Another ultimatum game

Proposers offer responders x points from y available
points
= Responders state what is the minimum acceptable offer
— If the offer 2 minimum acceptable offer:
— Proposers earn: m, =y — x
— Responders earn: i1y = x
— If the offer < minimum acceptable offer:
— Both earn 0 points

This is an example of the strategy method

Stage: start options

Background
To make proposers and responders) & Proposer =|= (0N

- % subjects.do { ... }

decide simultaneously Qa0
- subjects.do { ...

Sta ge Sta rt p ro pe rty . RandOther = find{ same(Group) & not{ =3

Proposer = if{ RandOther = Rand, 1, 0);
. Participate = if{ Proposer == 1, 1, 0);
u Wa|t for a” - @ Active screen
= Standard
— general case M ‘You are & proposer,

[The total amount of points to divide &
m Start is pOSS|bIe ch:;:jzny points do you offer to the

. D Waitingscreen
— simultaneous stages . Zk Responder - (GO
= subjects.da { ...
— stages that do not depend on other S Jpam.jpa'ﬁe J}Wmmw =0, 1, 0)
H - Active screen
participants @smdmd
O *fou are a responder,
O The total amount of points to divide a
M What is the smallest offer that you wi
[Ready
D Waitingscreen
|- & Profit Display =|= (30)N
- % subjects.do { ... }
MinAccept = find(same(Group) & Propod
Offer = find{ same(Group) & Propaoser
Accept = if{ Offer == MinAccept, 1, 0);
Profit = Accept * if{ Proposer == 1, Fie -
= @ Active screen
+ Standard
D Waitingscreen

C;% Exp. 4: A very simple English auction

Subjects are all buyers

= Subjects get a (random) private value for the auctioned
good

= Subjects make bids

= Winner pays the second highest price

" The auction is terminated after a fixed timeout
* Winner gets: m® =y +v,— b,

= Othersget: > =y

For market experiments we need to use the

= contracts table

— new types of boxes: contract creation box, contract list box,
and contract grid box

C;% Contracts table

The contracts table has a flexible number of records
(records can be added)

= New records are created in contract creation boxes

= or with the new command: contracts.new{ x=1; }
Buyer Bid Order

o

Contracts table

The contracts table has a flexible number of records
(records can be added)

= New records are created in contract creation boxes

= or with the new command: contracts.new{ x=1; }

Buyer

Bid

Order

2

10

1

Subject 2 makes a bid (highest bid)

o

Contracts table

The contracts table has a flexible number of records
(records can be added)

= New records are created in contract creation boxes

= or with the new command: contracts.new{ x=1; }

Buyer

Bid

Order

2

10

2

5

12

1

Subject 2 makes a bid (second highest bid)
Subject 5 makes a bid (highest bid)

Contracts table

The contracts table has a flexible number of records
(records can be added)

= New records are created in contract creation boxes

= or with the new command: contracts.new{ x=1; }
Buyer Bid Order

10 Subject 2 makes a bid
12

Subject 5 makes a bid (second highest bid)

15 Subject 4 makes a bid (highest bid)

Contracts table

The contracts table has a flexible number of records
(records can be added)

= New records are created in contract creation boxes

= or with the new command: contracts.new{ x=1; }
Buyer Bid Order

10 Subject 2 makes a bid

12 Subject 5 makes a bid

15 Subject 5 makes a bid (second highest bid)

17 Subject 2 makes another bid (highest offer)

C;% Contracts table

Contract Box

The contents of the T ——r
-Distance to the margin [p/%] - Adjustment of the remaining box

contracts table are displayed o i Corcel

with a contracts list box or L G e ™"
with a contracts grid box

—

Display
condition

Table [contracts ;I

Owner var.]

Condition {Bid> 0

Sorting IDrder
Scroling | Tobeginning ¥ Toend

IV Mark best foreign contract

Buttons [Position — Amangement
9 8 * Inrows

@ (e
¥

" In columns

C;% Exp. 5: A continuous public good game

In each period each subject gets 20 points.

" Points can be kept or invested in a public good and each
point invested in the public good pays 0.5 to everyone

" The profit of each subject is:

" There are 90 sec to make non-binding contributions and
contributions become binding when the time expires or
when the subject chooses to commit him/herself

= Contributions are observed in real-time by everyone

C;% Exp. 5: A continuous public good game

1 outof 1 Remaining time [secl. 118

You can now make your contributions!

To chanage your contribution enter a number and click
on the grey buttan. To commit to your current
contribution click an the red buttan.

Your current contribution Others Commited?

0 Contribution

0 Mo

0 Mo

Change your contribution: I:l No

‘ Change Contribution]

_ conmt |

C;% More contracts table

Note that the contracts table can also be used for
interaction within the same screen.

= Use the new command to create the table
= Use contract grid boxes

" Important: Changes to variables during the screen are
NOT recorded in the data

C;% Other features

Programming

" Loops: while(condition) { statements; }
Complex move structures

= goto next stage if ...

Treatments with indefinite length

" end with a given probability

=" end when a specific action is taken
Graphics

= Charts

= Display Pictures/Videos
Communication

= Chat box

C;% Questionnaires

Must be run so that the payoff file is written.
Questions with no consequence on payoff.

= Different formats for the questions.

" Layout is not screen oriented: indefinite end with
scrollbar.

= Text entry possible.

Typical Questionnaires:

= Address form (writes the payment file)
= Questions concerning their strategies
= Profit display

= Goodbye screen

C;% Planning a simple session

Welcome treatment (welcome.ztt)

= Set the show-up fee

= Control questions

Public goods experiment (pg.ztt)

" The main treatment

Ultimatum game (ug.ztt)

= A second treatment

Questionnaires and payment (end.ztq)
= payment file

