
Introduction to z-Tree

Design: Urs Fischbacher

Programming: Urs Fischbacher & Stefan Schmid

This slides by Ernesto Reuben

1. Never used it

2. Played with it a bit

3. Used it to run experiments

4. Used it to program and run experiments

zTree online support
▪ zTree hompage:

– http://www.iew.uzh.ch/ztree/index.php

▪ zTree Wiki
– https://www.uzh.ch/iew/ztree/ssl-dir/wiki/

▪ zTree mailing list
– go to https://lists.uzh.ch/iew.lists.uzh.ch/sympa/info/ztree

and click on the ‘Subscribe’ link

How well do you know zTree?

http://www.iew.uzh.ch/ztree/index.php
https://www.uzh.ch/iew/ztree/ssl-dir/wiki/
https://lists.uzh.ch/iew.lists.uzh.ch/sympa/info/ztree

zTree components

Treatment
▪ Arranged in a tree structure (the

stage tree)

▪ One background stage

– Set number of subjects,
groups, periods, exchange rate

– Default screens

– Treatment variables

▪ Any number of normal stages

– Each stage corresponds
(roughly) to one screen

zTree components

Stage
▪ Properties

– When does it start and end

▪ Programs

– Set and change variables

▪ Two screens

– Active: for input and display

– Waiting: display only

– Screens contain boxes
that in turn contain

– items and buttons

zTree components

Tables
▪ Data are stored in tables. Mostly in

– subjects table

– One row per subject

– globals table

– One row per treatment
(i.e., same value for all
subjects)

– A new subjects table and a new
globals table are created in
every period

▪ Other tables

– summary, contracts, session,
and logfile

– Other tables can be accessed
with the table.tablefunction

Programs
▪ Programs are executed at the

beginning of a stage or when
buttons are clicked

– Calculations are done by z-Tree
and then sent to the z-Leafs

– Programs are executed row by
row in the table they are called
(i.e. subject by subject in the
subjects table)

zTree components

Boxes
▪ Box = rectangular area of the screen

containing stuff

▪ They are positioned over each other

– standard box, header box, help
box, grid box, history box, chat
box, plot box

Positioning boxes
▪ Distances can be set as % of the

screen or in pixels

Display condition
▪ Makes boxes appear (when true) or

disappear (when false)

zTree components

Boxes
▪ Box = rectangular area of the screen

containing stuff

▪ They are positioned over each other

– standard box, header box, help
box, grid box, history box, chat
box, plot box

Useful tip
▪ Use container boxes

– rectangular area containing
other boxes

– lets you move many boxes at the
same time and keep things in
place with different resolutions

800p

600p

zTree components

How to build a test environment

Unzip zTreeMaterials.zip into a folder.

▪ Can be found at http://ereuben.net/teach/zTreeMaterials.zip

Open zTree with the batch file: “openztree.bat”

Open the file: “Open Zleafs.exe”

▪ Set as many zLeafs as
necessary

▪ If needed, change screen
resolution and other
options

Voters are randomly selected to prefer A or B

▪ Probability of preferring a pA > ½

Voters can vote for A, B, or abstain

▪ They get 100 if their preference wins and 0 otherwise

▪ Voting is costly: costs are drawn from a uniform
distribution ci [0, 50]

To have a function al program we need:

▪ Set variables in the background stage

▪ Two other stages
– Voting stage: voters are told their preference and make their

decision

– Result stage: voters are informed of the election’s outcome

Exp. 1: Rational turnout

Variables are defined the first time they are referenced
in a table

– They are always a real number

Defining treatment variables in the background stage:

globals.do{

A = 1;

B = 2;

Pa = 0.75;

MaxC = 50;

Prize = 100;

}

Creating variables

There is a good number of functions that can be used for
programming:

Draw types and costs:

subjects.do{

Type = if(random() < Pa, A, B);

C = round(random() * MaxC, 1);

}

Functions

Syntax 1: table function(expression)

▪ e.g. number of voters and the average cost of voting:

subjects.do{

N = count();

AvgC = average(C);

}

Syntax 2: table function(condition, expression)

▪ e.g. number of As and the average cost of voting for As:

subjects.do{

Na = count(Type==A);

AvgCa = average(Type==A, C);

}

Table functions

Programs are run sequentially per row

subjects.do{

Type = if(random() < Pa, A, B);

C = round(random() * MaxC, 1);

Na = count(Type==A);

Nb = count(Type==B);

}

Incorrect!

Table functions

Programs are run sequentially per row

subjects.do{

Type = if(random() < Pa, A, B);

C = round(random() * MaxC, 1);

}

subjects.do{

Na = count(Type==A);

Nb = count(Type==B);

}

Correct!

Table functions

Input and output of variables

Items are used for the input and output of variables

▪ Label (text displayed)

▪ Variable (for input or output)

▪ Layout:
– numbers – radio buttons

– check boxes – sliders

– scrollbars – text

Note

▪ If the item is used for input
we also need a button

Variables integrated into text

▪ If instead of displaying “Your type is: A” you want to
display “If A wins you earn 100 points but if B wins you
earn 0 points” then type the following in the label box

<>If <Type |!text: A=“A”; B=“B”;> wins you earn 100 points
but if <Type |!text: A=“B”; B=“A”;> wins you earn 0 points

RTF is supported so you can do a lot of stuff

▪ To display “Your profit in this period was –5.00 points”
where the profits are bold only when negative then type

<>{\rtf Your \i profit \i0 in this period was
<Profit |!text: 1=“”; –1=“\b ”;><Profit |0.01> points
<Profit |!text: 1=“”; –1=“\b0 ”;>}

Input and output of variables

Use the globals table when a variable is the same value
for all subjects

globals.do{

Tiebreak = if(random()<0.5, A, B);

}

subjects.do{

Votesa = count(Vote==1 & Type==A);

Votesb = count(Vote==1 & Type==B);

Winner = if(Votesa > Votesb, A, 0) + if(Votesa < Votesb, B, 0)
+ if(Votesa == Votesb, Tiebreak, 0);

Profit = MaxC + if(Winner == Type, Prize, 0) - C*Vote;

}

globals table

In most experiments subjects are divided into groups

Let’s redo the rational turnout experiment but with
random allocation of voters to groups of 5 and then

▪ Voters are randomly selected to prefer A or B

– Probability of preferring a pA > ½

▪ Voters can vote for A, B, or abstain

– They get 100 if their preference wins and 0 otherwise

– Voting is costly: drawn from a uniform distribution
ci [0, 50]

Groups

The variable Group determines the group matching

▪ The number of groups can be set in the background
stage

There are menu commands for different types of
matchings (treatment menu):

▪ Partner

▪ Stranger

▪ absolute Stranger

▪ typed absolute Stranger

Important:

▪ Before running an experiment, check the parameter
table (treatment menu)

Groups

The Group variable can also be changed:

▪ Manually in the parameter table

– Double-click on each cell and set group

▪ Through a program in the background stage, e.g.,

subjects.do{

Group = 1;

Group = if(Subject >= 6 & Subject <= 15, 2, Group);

Group = if(Subject > 15, 3, Group);

}

Groups

▪ Partners in groups of size N, e.g. N = 4:
globals.do{

N = 4;

}

subjects.do{

Group = roundup(Subject / N, 1);

}

Common matching protocols

▪ Strangers in groups of size N, e.g. N = 4:
globals.do{

N = 4;

}

subjects.do{

RndNum = random();

}

subjects.do{

Group = roundup(count(RndNum <= :RndNum) / N, 1);

}

Common matching protocols

▪ Strangers within matching groups of size M and in groups of size
N, e.g. M = 10 & N = 2:

globals.do{

M = 10;

N = 2;

}

subjects.do{

MatchGroup = roundup(Subject / M, 1);

RndNum = random() + MatchGroup;

}

subjects.do{

Group = roundup(count(RndNum <= :RndNum) / N, 1);

}

Common matching protocols

same() is the table function used to make group
calculations

▪ e.g. to count the total number of voters, the number of
A voters and the number of B voters within each group

subjects.do{

N = count(same(Group));

Na = count(same(Group) & Type==A);

Nb = count(same(Group) & Type==B);

}

same() function

Alternatively, one can use the scope operator “:”

subjects.do{

N = count(Group == :Group);

Na = count(Group == :Group & Type==A);

Nb = count(Group == :Group & Type==B);

}

Scope operator

Scope operator gives you more flexibility

▪ e.g. rank voters in the group according to their cost

subjects.do{

RankC = count(same(Group) & C <= C);

}

Incorrect!

subjects.do{

RankC = count(same(Group) & C <= :C);

}

Correct!

Scope operator

Subjects are matched in pairs

▪ Each pair has 1 proposer and 1 responder

▪ Proposers offer responders x points from y available
points

▪ Responders can accept or reject the offer

– If the responder accepts:

– Proposers earn: πP = y – x

– Responders earn: πR = x

– If the responder rejects:

– Both earn 0 points

Play for t periods

▪ Random matching and random assignment of roles

Exp. 2: An ultimatum game

Player types can be assigned by programming them

▪ e.g., to randomly allocate one proposer and one responder
per pair

subjects.do{

RndNum = random();

}

subjects.do{

RndOther = find(same(Group) & not(same(Subject)) ,
RndNum);

Proposer = if(RndOther > RndNum, 1, 0);

}

Or ... use the parameter table (less flexible)

▪ period parameters, subject parameters, period × subject
parameters

Assigning types

▪ Typed partners in groups of size N and with N types of players
where each group has one player of each type and types are
constant across periods, e.g. N = 2:

globals.do{

N = 2;

}

subjects.do{

Group = roundup(Subject / N, 1);

Type = mod(Subject - 1, N) + 1;

}

Common matching protocols

▪ Typed partners in groups of size N and with N types of players
where each group has one player of each type and types are
randomly redrawn every period, e.g. N = 2:

globals.do{

N = 2;

}

subjects.do{

RndNum = random();

Group = roundup(Subject / N, 1);

}

subjects.do{

Type = mod(count(same(Group) & RndNum <= :RndNum) - 1, N) + 1;

}

Common matching protocols

▪ Typed strangers in groups of size N and with N types of players
where each group has one player of each type and types are
randomly redrawn every period, e.g. N = 2:

globals.do{

N = 2;

}

subjects.do{

RndNum = random();

}

subjects.do{

Group = roundup(count(RndNum <= :RndNum) / N, 1);

}

subjects.do{

Type = mod(count(same(Group) & RndNum <= :RndNum) - 1, N) + 1;

}

Common matching protocols

▪ Typed strangers in groups of size N and with N types of players
where each group has one player of each type and types are
constant every period, e.g. N = 2:

globals.do{

N = 2;

NG = subjects.maximum(Subject) / N;

}

subjects.do{

Type = mod(Subject - 1, N) + 1;

RndNum = random();

}

subjects.do{

Group = mod(count(same(Type) & RndNum <= :RndNum) - 1, NG) +
1;

}

Common matching protocols

▪ Typed strangers within matching groups of size M in groups of size N and with
N types of players where each group has one player of each type and types are
randomly redrawn every period, e.g. M = 10 & N = 2:

globals.do{

M = 10;

N = 2;

}

subjects.do{

MatchGroup = roundup(Subject / M, 1);

RndNum = random() + MatchGroup;

}

subjects.do{

Group = roundup(count(RndNum <= :RndNum) / N, 1);

}

subjects.do{

Type = mod(count(same(Group) & RndNum <= :RndNum) - 1, N) + 1;

}

Common matching protocols

▪ Typed strangers within matching groups of size M in groups of size N and with
N types of players where each group has one player of each type and types are
constant every period, e.g. M = 10 & N = 2:

globals.do{

M = 10;

N = 2;

NG = subjects.maximum(Subject) / N;

}

subjects.do{

MatchGroup = roundup(Subject / M, 1);

Type = mod(count(same(MatchGroup) & Subject <= : Subject) - 1, N) + 1;

RndNum = random() + MatchGroup;

}

subjects.do{

Group = mod(count(same(Type) & RndNum <= :RndNum) - 1, NG) + 1;

}

Common matching protocols

Sequential vs. simultaneous screens

Rational turnout Ultimatum game

Voting decision

Profit display

Proposer offer

Responder
acceptance

Responder
profit display

Proposer profit
display

waiting

waiting

Participate

The variable Participate determines
who enters a stage
▪ Enter stage: Participate = 1.

▪ Skip stage: Participate = 0.

▪ At every stage, Participate resets to 1

For the ultimatum game use either
▪ Participate = if (Proposer == 1, 1, 0);

▪ Participate = if (Proposer == 0, 1, 0);

Proposers offer responders x points from y available
points

▪ Responders state what is the minimum acceptable offer

– If the offer ≥ minimum acceptable offer:

– Proposers earn: πP = y – x

– Responders earn: πR = x

– If the offer < minimum acceptable offer:

– Both earn 0 points

This is an example of the strategy method

Exp. 3: Another ultimatum game

Stage: start options

To make proposers and responders
decide simultaneously

Stage start property
▪ Wait for all

– general case

▪ Start is possible

– simultaneous stages

– stages that do not depend on other
participants

Subjects are all buyers

▪ Subjects get a (random) private value for the auctioned
good

▪ Subjects make bids

▪ Winner pays the second highest price

▪ The auction is terminated after a fixed timeout

▪ Winner gets: πB = y + vi – b2

▪ Others get: πS = y

For market experiments we need to use the

▪ contracts table
– new types of boxes: contract creation box, contract list box,

and contract grid box

Exp. 4: A very simple English auction

The contracts table has a flexible number of records
(records can be added)

▪ New records are created in contract creation boxes

▪ or with the new command: contracts.new{ x=1; }

Contracts table

Buyer Bid Order

Contracts table

The contracts table has a flexible number of records
(records can be added)

▪ New records are created in contract creation boxes

▪ or with the new command: contracts.new{ x=1; }
Buyer Bid Order

2 10 1 Subject 2 makes a bid (highest bid)

Contracts table

The contracts table has a flexible number of records
(records can be added)

▪ New records are created in contract creation boxes

▪ or with the new command: contracts.new{ x=1; }
Buyer Bid Order

2 10 2 Subject 2 makes a bid (second highest bid)

5 12 1 Subject 5 makes a bid (highest bid)

Contracts table

The contracts table has a flexible number of records
(records can be added)

▪ New records are created in contract creation boxes

▪ or with the new command: contracts.new{ x=1; }

Buyer Bid Order

2 10 3 Subject 2 makes a bid

5 12 2 Subject 5 makes a bid (second highest bid)

4 15 1 Subject 4 makes a bid (highest bid)

Contracts table

The contracts table has a flexible number of records
(records can be added)

▪ New records are created in contract creation boxes

▪ or with the new command: contracts.new{ x=1; }

Buyer Bid Order

2 10 4 Subject 2 makes a bid

5 12 3 Subject 5 makes a bid

4 15 2 Subject 5 makes a bid (second highest bid)

2 17 1 Subject 2 makes another bid (highest offer)

Contracts table

The contents of the
contracts table are displayed
with a contracts list box or
with a contracts grid box

In each period each subject gets 20 points.

▪ Points can be kept or invested in a public good and each
point invested in the public good pays 0.5 to everyone

▪ The profit of each subject is:

πi = 20 – ci + 0.5 × ∑jcj

▪ There are 90 sec to make non-binding contributions and
contributions become binding when the time expires or
when the subject chooses to commit him/herself

▪ Contributions are observed in real-time by everyone

Exp. 5: A continuous public good game

Exp. 5: A continuous public good game

Note that the contracts table can also be used for
interaction within the same screen.

▪ Use the new command to create the table

▪ Use contract grid boxes

▪ Important: Changes to variables during the screen are
NOT recorded in the data

More contracts table

Programming

▪ Loops: while(condition) { statements; }

Complex move structures

▪ goto next stage if …

Treatments with indefinite length

▪ end with a given probability

▪ end when a specific action is taken

Graphics

▪ Charts

▪ Display Pictures/Videos

Communication

▪ Chat box

Other features

Must be run so that the payoff file is written.

Questions with no consequence on payoff.

▪ Different formats for the questions.

▪ Layout is not screen oriented: indefinite end with
scrollbar.

▪ Text entry possible.

Typical Questionnaires:

▪ Address form (writes the payment file)

▪ Questions concerning their strategies

▪ Profit display

▪ Goodbye screen

Questionnaires

Planning a simple session

Welcome treatment (welcome.ztt)

▪ Set the show-up fee

▪ Control questions

Public goods experiment (pg.ztt)

▪ The main treatment

Ultimatum game (ug.ztt)

▪ A second treatment

Questionnaires and payment (end.ztq)

▪ payment file

