

EXPERIMENTAL ECONOMICS

جامعـةنيويورلك أبوظــــي
\# NYU ABU DHABI

STRATEGIC BEHAVIOR WITH BOUNDEDLY-RATIONAL PLAYERS Ernesto Reuben

QuANTAL RESPONSE EQUILIBRIUM

How do we model deviations from rationality? (Goeree \& Holt 2001)

Quantal response equilibrium (Goeree et al. 2005)

- Smoothens discontinuous best responses according to a regular quantal response function
- Interiority: $P_{\text {is }}>0$ for all s
- Continuity: $P_{\text {is }}$ is differentiable
- Responsiveness: $\partial P_{i s} / \partial \pi_{i s}$ for all s
- Monotonicity: $\pi_{i s}>\pi_{i r}$ implies $P_{i s}>P_{\text {ir }}$
- Logit quantal response equilibrium

$$
P_{i s}=e^{\lambda \pi_{i s}} / \sum_{r} e^{\lambda \pi_{i r}}
$$

Cognitive hierarchies

How do we model the interaction between different types of boundedly-rational individuals to capture persistent deviations from competitive equilibria?

The beauty contest

"It is not a case of choosing those [faces] that, to the best of one's judgment, are really the prettiest, nor even those that average opinion genuinely thinks the prettiest. We have reached the third degree where we devote our intelligences to anticipating what average opinion expects the average opinion to be. And there are some, I believe, who practice the fourth, fifth and higher degrees." Keynes (1936)

The Beauty contest

The guessing game (Moulin 1986)

- n players simultaneously choose a number $s \in[1,100]$
- The winner is the player whose number is the closest to ρ \times average s (ties are broken randomly)
- Standard Nash equilibrium is:
- Everyone chooses 1 if $\rho<1$
- Everyone chooses 100 if $\rho>1$
- The game captures Keynes' intuition and at a basic level some of the incentives in asset markets

The Beauty contest

SUNDAY MORNING, MAY 14,1933
SAN ANTONIO EXPRESS
D 9
Here Are Ten More Winners in the Court of Honor Competition

Nagel (1995)
- Vast majority of
numbers above 0
but few dominated
strategies

The Beauty contest

Here Are Ten More Winners in the Court of Honor Competition

Numbers decr with repetition very gradually high ρ)

Queen and Tadies in-Waiting WiI Be Anporuaced at [What جأمعـة نيويورلكابـوظـبي

NYU ABU DHABI

The Beauty contest

SUNDAY MORNING, MAY 14,1933
SAN ANTONIO EXPRESS
D
Here Are Ten More Winners in the Court of Honor Competition

Cognitive hierarchies

- Individuals differ in their capacity to anticipate the actions of others, but not in their ability to best respond!
- Assumes individuals hold overconfident beliefs
- Level 0: chooses randomly (or a default) Higher levels best respond to their beliefs \rightarrow which are:
- Level 1: all others are L0
- Level 2: p_{0} are L0 and p_{1} are L1
- Level 3: p_{0} are L0, p_{1} are L1, and p_{2} are L2
- etc. ...

Cognitive hierarchies

Cognitive hierarchies

The 11-20 game (Arad \& Rubinstein 2012)

- 2 players pick an integer number between 11 and 20
- Picking 20 pays $\$ 20$. Any other number pays $\$ 17$ plus $\$ 20$ more if your number is exactly 1 less than the other player's
- etc. ...

Cognitive hierarchies

Cognitive hierarchies

Cognitive hierarchies

Higher-order rationality

Kneeland (2015)

- Do you think that others think that other's are rational?

2' earnings

Player 3's earnings

Player 4's earnings

$\begin{aligned} & n \\ & \stackrel{n}{0} \\ & \underset{\sim}{U} \end{aligned}$		Your actions		
		A	B	C
	J	14	18	4
	K	20	8	14
$\frac{\pi}{\pi}$	L	0	16	18

Your earnings
Player 2's actions

Game 2

Player 2' earnings
Player 3's actions

$\begin{aligned} & n \\ & \stackrel{n}{0} \\ & 0 \\ & 0 \\ & n \\ & n \end{aligned}$		G	H	I
	D	8	12	10
	E	6	10	8
-	F	12	16	14

Player 3's earnings
Player 4's actions

Player 4's earnings
Your actions

Higher-order rationality

Kneeland (2015)

- R1: Ignores Player 2's incentives \rightarrow same choice in both games
- R2: Notices that Player 2 has different dominant strategies in the two games \rightarrow plays A in Game 1 and B in Game 2

Your earning			
Player 2's actions			
	D	E	F
$\sim \mathrm{A}$	20	14	8
- B	16	2	18
\bigcirc	0	16	16

Your earnings

Player 2's actions

$\begin{aligned} & \text { n } \\ & \stackrel{0}{U} \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$	D	E	F
	20	14	8
	16	2	18
$>$ C	0	16	16

Higher－order rationality

Kneeland（2015）

－R1：Ignores Player 2＇s incentives \rightarrow same choice in both games
－R2：Notices that Player 2 has the same incentives in both games \rightarrow same choice in both games

Your earning			
Player 2＇s action			
	D	E	F
A	8	20	12
$\underset{\sim}{0}$ B	0	8	16
\bigcirc	18	12	6

Your earnings

Player 2＇s actions

$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \end{aligned}$	D	E	F
	8	20	12
	0	8	16
	18	12	6

Higher-order rationality

Kneeland (2015)

- R3: Notices that Players 2 and 3 have the same incentives in both games \rightarrow same choice in both games

Your earnings

Player 2's actions

Player 2' earnings
Player 3's actions

$\begin{gathered} n \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ n \\ n \end{gathered}$	G		H	I
	D	14	18	4
	E	20	8	14
$\frac{\stackrel{\pi}{0}}{\alpha}$	F	0	16	18

Higher-order rationality

Kneeland (2015)

- R4: Notices that Player 4 has different dominant strategies in the two games \rightarrow anticipates the reaction of Players 2 and 3 and plays A in Game 3 and C in Game 4

	Your earnings Player 2's actions			Player 2' earnings Player 3's actions				Player 3's earnings Player 4's actions			
				suo!fores, ટ дəイе\|	G	H	I		J	K	L
	8	20	12		14	18	4		20	14	8
	0	8	16		20	8	14		16	2	18
	18	12	6		0	16	18		0	16	16

Player 2' earnings
Player 3's actions

$\begin{aligned} & n \\ & \tilde{O} \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & n \end{aligned}$	D	G	H	I
		14	18	4
	E	20	8	14
$\stackrel{\widetilde{0}}{0}$	F	0	16	18

Player 3's earnings
Player 4's actions

Higher-order rationality

Kneeland (2015)

- Results: Fairly even distribution between R1, R2, R3, and R4

References

- Arad, Ayala, and Ariel Rubinstein. 2012. "The 11-20 Money Request Game: A Level- K Reasoning Study." American Economic Review 102 (7): 3561-73.
- Bosch-Domènech, Antoni, José G Montalvo, Rosemarie Nagel, and Albert Satorra. 2002. "One, Two, (Three), Infinity, ... : Newspaper and Lab Beauty-Contest Experiments." American Economic Review 92 (5): 1687-1701.
- Camerer, Colin F, Teck H Ho, and Juin-Kuang Chong. 2004. "A Cognitive Hierarchy Model of Games." The Quarterly Journal of Economics 119 (3): 861-98.
- Camerer, Colin F, T.-H. Ho, and J.-K. Chong. 2004. "A Cognitive Hierarchy Model of Games." The Quarterly Journal of Economics 119 (3): 861-98.
- Goeree, Jacob K, and Charles A Holt. 2001. "Ten Little Treasures of Game Theory and Ten Intuitive Contradictions." American Economic Review 91 (5): 1402-22.
- Goeree, Jacob K, Charles A Holt, and Thomas R Palfrey. 2005. "Regular Quantal Response Equilibrium." Experimental Economics 8 (4): 347-67.
- Kneeland, Terri. 2015. "Identifying Higher-Order Rationality." Econometrica 83 (5): 2065-79.
- Keynes, John M. 1936. The General Theory of Employment, Interest and Money. Cambridge: Macmillan Cambridge University Press.
- Moulin, Hervé. 1986. Game Theory for Social Sciences. New York, NY: New York Press.

جامعـة نيويورلك ابـوظـبي

\& NYU ABU DHABI

References

- Nagel, Rosemarie. 1995. "Unraveling in Guessing Games: An Experimental Study." American Economic Review 85 (5): 1313-26.
- Stahl, Dale O, and Paul W Wilson. 1994. "Experimental Evidence on Players' Models of Other Players." Journal of Economic Behavior \& Organization 25 (3): 309-27.

