Punishment

- Altruistic Punishment Fehr & Gächter 2002
- Design
 - VCM: n = 4, e = 20, 20 periods, MPCR = 0.4, perfect strangers matching
 - Treatment 1: no punishment
 - Treatment 2: punishment
 - The costs 1 to inflict 3 points of damage
- Result
 - Punishment increases cooperation
 - But not necessarily earnings

Benefits of Punishment

- The Long-Run Benefits of Punishment Gächter et al. 2009
- Design
 - VCM: n = 3, e = 20, MPCR = 0.5, partners matching, costs 1 to damage by 3
 - Treatment variation 1: punishment / no punishment
 - Treatment variation 2: 10 periods / 50 periods
- Result
 - Punishment increases earnings in the long run but not the short run

Implementing punishment

- Choosing to be in a punishing society Gürerk et al. 2006
 - Punishment works but do subjects choose to live in a world with punishment?
- Design
 - VCM: *n* = 1-12, *e* = 20+20, 30 periods, MPCR = 1.6 / *n*
 - 2 institutions/groups
 - Punishment
 - No punishment
 - 3 stages
 - Stage 0: choose group
 - Stage 1: contribution stage
 - Stage 2: punishment stage (only in punishment group)
 - The cost of punishment is 1 point for 3 points of damage

Implementing punishment

• Choosing to be in a punishing society Gürerk et al. 2006

Results

• By the end of the game almost everyone 'lives' in the punishment group and is cooperating fully

Implementing punishment

• Choosing to be in a punishing society Gürerk et al. 2006

Results

• As of period 4, high contributors make higher earnings in the punishment group than free-riders in the non-punishment group

Punishment across societies

- Is punishment pervasive across societies? Herrmann et al. 2008
 - Most experiments are done in western countries
 - Is punishment used and does it increase contributions in other societies?
- Design
 - VCM: n = 3, e = 20, MPCR = 0.5, partners matching, costs 1 to damage by 3
 - Treatments: punishment / no punishment
 - Run in various cities
 - Boston, Nottingham, Copenhagen, Bonn, Zurich, St. Gallen, Minsk, Dnipropetrovs'k, Samara, Athens, Istanbul, Riyadh, Muscat, Seoul, Chengdu, Melbourne

Punishment across societies

- Is punishment pervasive across societies? Herrmann et al. 2008
 - Punishment is pervasive but it does not always increase contributions
 - Works: Boston, Nottingham, Copenhagen, Bonn, Zurich, St. Gallen, Minsk, Seoul, Chengdu, Melbourne
 - Did not work: Dnipropetrovs'k, Samara, Athens, Istanbul, Riyadh, Muscat

Experimental Economics - Ernesto Reuben

15 small-scale societies

• Ultimatum games in small-scale societies Hendrich et al 2001

- Large variation in living styles
 - From nomadic foragers to sedentary farmers,
 - From tropical forests to a high-altitude desert

15 small-scale societies

• Ultimatum games in small-scale societies Hendrich et al 2001

Results

Offers

Rejection

15 small-scale societies

• Ultimatum games in small-scale societies Hendrich et al 2001

- Results
 - Positive relationship between importance of cooperation and high offers
 - Positive relationship between market integration and high offers

Payoffs to Cooperation

Punishment across societies

Conclusion

- Can something be concluded about culture with unrepresentative samples?
 - Gächter & Herrmann (2006) find more variation between rural Russian subjects and Russian students than between the latter and German students
- We can still say that punishment is a robust phenomena across cultures
 - Even monkeys reject "Unequal Pay" (Brosman & de Waal 2003)

The economics of punishment

- The effectiveness of punishment Nikiforakis and Normann 2008
 - How sensitive is the effect of punishment to price changes
- Design
 - Public good game with punishment
 - e = 20, n = 4, MPCR = 0.4, 10 periods, partners matching
 - 5 treatments
 - No punishment
 - Costs 1 to punish by 1
 - Costs 1 to punish by 2
 - Costs 1 to punish by 3
 - Costs 1 to punish by 4

The economics of punishment

- The effectiveness of punishment Nikiforakis and Normann 2008
- Results
 - Punishment sustains cooperation with a damage/cost ratio greater than 2/1
 - Punishment increases welfare with a damage/cost ratio greater than 3/1

Counter-punishment

- **Retaliation** Nikiforakis 2008
 - The effect of retaliation on cooperation
- Design
 - Public good game with punishment
 - e = 20, n = 4, MPCR = 0.4, 20 periods
 - 3 treatments
 - No punishment
 - 1 round of punishment
 - 2 rounds of punishment

Counter-punishment

- **Retaliation** Nikiforakis 2008
 - Results
 - The availability of retaliation reduces the amount and effectiveness of punishment

- **Privileged groups** Reuben and Riedl 2008
 - Privileged groups are those in which some members do not have an incentive to free ride
- Design
 - Public good game with/without punishment
 - 10 periods, n = 3, e = 20, partners matching
 - 2 treatments
 - Normal groups: all have an MPCR = 0.5
 - Privileged groups
 - For 2 group members (low-benefit): $\pi_L = 20 c_i + 0.5 \sum c_j$
 - For 1 group member (high-benefit): $\pi_H = 20 c_i + 1.5 \sum c_j$
 - Conflict in privileged groups
 - High-benefit: My contributions help others, they should reciprocate
 - Low-benefit: The high-benefit will contribute anyway, why reciprocate?

- **Privileged groups** Reuben and Riedl 2008
 - Punishment works better in normal groups

Experimental Economics - Ernesto Reuben

- **Privileged groups** Reuben and Riedl 2008
 - Without punishment: higher contributions due to high-benefit subjects

- **Privileged groups** Reuben and Riedl 2008
 - Smaller willingness of low-benefit subjects to contribute

Experimental Economics - Ernesto Reuben

- **To punish or not to punish** Sanfrey et al. 2003
 - Subjects play and ultimatum game 30 times, \$10 pie
 - Scan responders during rejection decision
 - 3 treatments
 - Proposer is a 'human'
 - Proposer is a computer
 - No proposer
 - Same offer distribution between human and computer
 - Problems
 - Deception
 - Showed pictures of human players

- To punish or not to punish Sanfrey et al. 2003
 - Results
 - Higher activation in anterior insula for unfair human offers
 - Activation is higher with degree of unfairness

- **To punish or not to punish** Sanfrey et al. 2003
 - Results
 - Higher activation in anterior insula for unfair human offers
 - Activation is higher with degree of unfairness
 - Activation is highest with rejection
 - Higher activation in right dorsolateral prefrontal cortex
 - Not sensitive to rejection

- Sweet taste of revenge Quervain et al. 2004
 - Subjects play a trust game with punishment (repeated 4 times)
 - PET scan A while making the punishment decision (up to 20 points)
 - 4 treatments (within subjects)
 - Intentional & Costly
 - Costs 1 point to reduce 2 points
 - Intentional & Free
 - Punishment is free
 - Intentional & Symbolic
 - Punishment is free but harmless
 - Non-intentional & Costly
 - B's decision determined by computer
 - Costs 1 point to reduce 2

- Sweet taste of revenge Quervain et al. 2004
 - Results
 - Higher activation in the caudate nucleus if punishment is effective and desirable (IC + IF) (IS + NC)
 - Higher activation correlated with more punishment (IC)
 - Higher activation in the ventromedial prefrontal cortex if punishment is costly IC – IF

- **Primitive instinct or social skill?** Knoch et al. 2006
 - The role of the prefrontal cortex
 - Subject play an ultimatum game 20 times
 - Offers restricted to 50%, 40%, 30%, and 20%
 - Responders are subjected to transcranial magnetic stimulation
 - 2x2 design
 - Between subjects
 - Inhibit right dorsolateral prefrontal cortex
 - Inhibit left dorsolateral prefrontal cortex
 - Sham
 - Within subjects (10 periods each)
 - Human chosen offer
 - Computer chosen offer

- **Primitive instinct or social skill?** Knoch et al. 2006
 - Results
 - For human-generated offers, disruption of the RDPC *increases* acceptance rates
 - Does not change the perceived unfairness of the offer

Experimental Economics - Ernesto Reuben

- **Primitive instinct or social skill?** Knoch et al. 2006
 - Results
 - For human-generated offers, disruption of the RDPC *increases* acceptance rates
 - Does not change the perceived unfairness of the offer
 - No such effect for computer-generated offers

Experimental Economics - Ernesto Reuben

- **Role of expectations** Bosman and van Winden 2002
 - Power-to-take game
 - Proposer and responder get 10 euros
 - Proposer chooses take rate *t*
 - Responder observes *t* and chooses destruction rate *d*
 - Payoffs are: $\pi_p = 10 + t(1-d)10$ and $\pi_r = (1-t)(1-d)10$
 - After choosing *d* responders are asked:
 - how they felt when they saw *t*
 - what their expectation of *t* was
 - what would be in their opinion a fair *t*
 - One-shot game

- **Role of expectations** Bosman and van Winden 2002
- Results
 - Anger-like emotions are the best predictors of destruction
 - Intensity depending on d > 0 or d = 0
 - Anger: 4.00 / 3.32
 - Irritation: 5.88 / 3.58
 - Contempt: 5.25 / 2.42
 - Envy: 4.00 / 3.58
 - Anger is triggered by
 - High *t*
 - Low expected *t*

Expected take rate

Why punishment works?

- **Prosocial emotions** Hopfensitz and Reuben 2009
 - For punishment to be effective:
 - Punished subjects should switch to cooperation
 - Punished subjects should not punish back
 - Design
 - Trust game with 'infinite' rounds of punishment (costs 1 to reduce 4)
 - 2 periods, perfect strangers
 - emotions are measured before making decisions

Why punishment works?

- **Prosocial emotions** Hopfensitz and Reuben 2009
 - Results
 - 2nd movers cooperate after being punished only if they feel guilt

Why punishment works?

- **Prosocial emotions** Hopfensitz and Reuben 2009
 - Results
 - Considerable retaliation after receiving punishment
 - 40% of second movers punish back if punished
 - retaliation lowered the damage/cost ratio of punishment from 4/1 to 3/1
 - 2nd movers retaliate because:
 - They are angry and feel no guilt

