

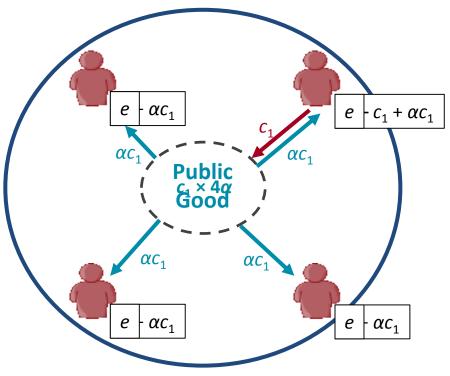
EXPERIMENTAL ECONOMICS COOPERATION


جامعـة نيويورك أبوظـي NYU ABU DHABI 🌾

Ernesto Reuben

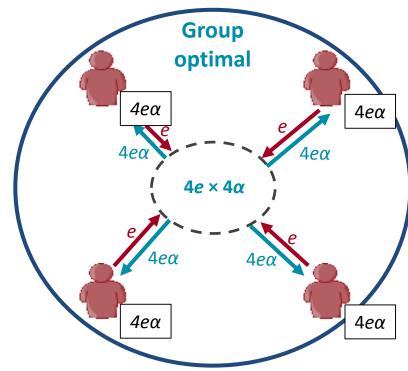
Real-world problems of cooperation

 Cooperative hunting and warfare, teamwork in firms, charities and giftgiving, environmental protection, economic public goods (e.g., paying taxes, fishing, security), political collective action (e.g., voting, lobbying, revolutions), etc.


> Classical literature: Samuelson (1954), Olson (1965), Hardin (1968)

- Each group member i ∈ {1, ..., n} decides how much of her endowment to contribute to the public good c_i ∈ [0, e_i]. Any contribution benefits i by α_i.
- *i*'s profit:

 $\boldsymbol{\pi}_i = \boldsymbol{e}_i - \boldsymbol{c}_i + \boldsymbol{\alpha}_i \boldsymbol{\sum}_j \boldsymbol{c}_j$

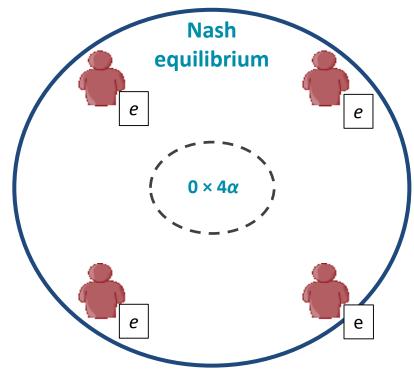


جامعـة نيويورك ابوظبي NYU ABU DHABI

- Each group member i ∈ {1, ..., n} decides how much of her endowment to contribute to the public good c_i ∈ [0, e_i]. Any contribution benefits i by α_i.
- *i*'s profit:

```
\pi_i = e_i - c_i + \alpha_i \sum_j c_j
```

• if $\sum_{j} \alpha_{j} > 1$



- Each group member i ∈ {1, ..., n} decides how much of her endowment to contribute to the public good c_i ∈ [0, e_i]. Any contribution benefits i by α_i.
- *i*'s profit:

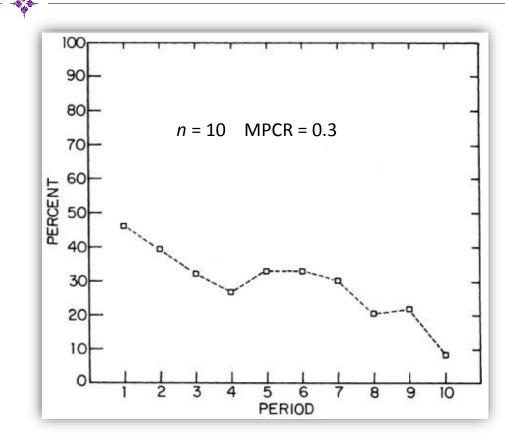
```
\boldsymbol{\pi}_i = \boldsymbol{e}_i - \boldsymbol{c}_i + \boldsymbol{\alpha}_i \boldsymbol{\sum}_j \boldsymbol{c}_j
```

- if $\sum_i \alpha_i > 1$
- if $\alpha_i < 1 \ \forall i$

THE LINEAR PUBLIC GOOD GAME

Standard result

- Initial cooperation of 40-60%
- Cooperation declines with repetition


Some stylized facts

- Positive effect of MPCR
- Positive effect of partners matching
- No effect of group size
- Negative effect of experience

Less robust

- Negative effect of heterogeneity
- No effect of number of periods
- Women contribute more and economists less
- Positive effect of framing

جامعـة نيويورك ابوظـي NYU ABU DHABI

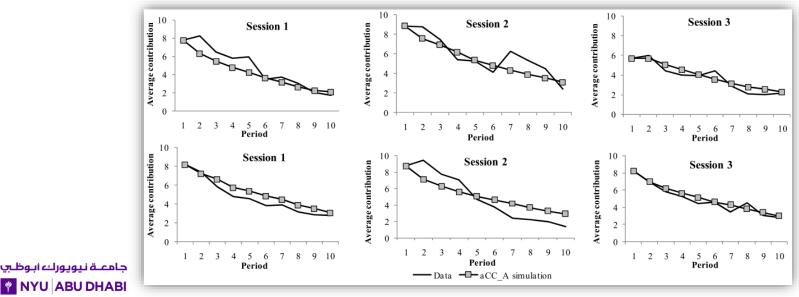
Fischbacher & Gächter (2010)

- 140 subjects play a VCM with n = 4, e = 20, MPCR = 0.4 in two conditions
- In choice subjects play 10 periods with strangers matching
- In preference the subjects' preferences for contribution are elicited
- Incentivized elicitation of beliefs about the contribution of others in every period of choice

Eliciting preferences for contribution

- Unconditional contribution decision
- Use the strategy method to elicit conditional contribution schedules with respect to the mean unconditional contribution
- Pick randomly three unconditional contributions and one conditional contribution

CONDITIONAL COOPERATION

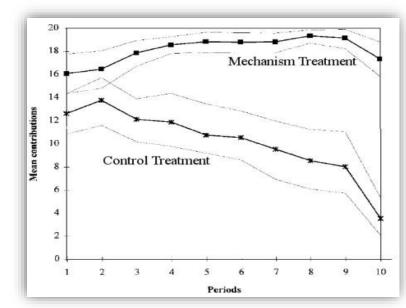

Fischbacher & Gächter (2010)

- Mostly preferences for conditional cooperation and selfishness
- Strong association between beliefs and the unconditional cooperation decision

CONDITIONAL COOPERATION

- Fischbacher & Gächter (2010)
- Can conditional cooperation explain the decline of contributions?
 - Use their conditional preferences, initial beliefs, and a belief-updating process to predict contributions in all periods

HOW DO WE INCREASE COOPERATION?

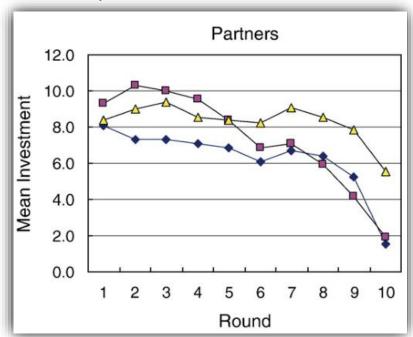

🌪 NYU ABU DHABI

Falkinger et al. (2000)

- If *i* contributes more than the average, *i* gets a bonus β(c_i ĉ_{-i})
- If *i* contributes less than the average, *i* pay a tax β(ĉ_{-i} c_i)
- Note that if β + α > 1 then there is a dominant strategy to contribute everything
- 240 subjects play a VCM with n = 4, e = 20, 10 periods, MPCR = 0.4 with either β = 0 or β = 0.7

جامعےۃ نیویورک ابوظی NYU ABU DHABI

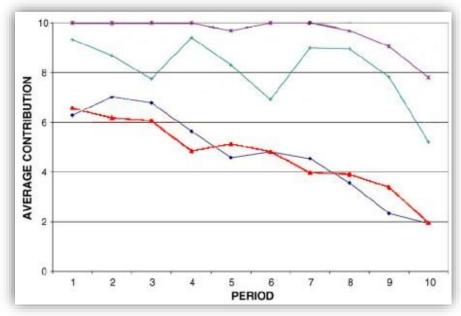
- The mechanism clearly works and is robust to different group sizes and interior equilibria
- But how do you enforce it?



Tan & Bolle (2007)

- Two groups compete in the amount of contributions to their public good
- The winner gets α = 0.67 and the loser gets α = 0.33
- 144 subjects play a VCM with n = 3, e =
 12, 10 periods with either
 - α = 0.5 and no information about relative contributions
 - α = 0.5 and information about relative contributions
- α ∈ {0.33, 0.67} and information about
 جامعة نيويورك ابوظر
 NYU ABU DHABI relative contributions

- Effect of information and of competition
- In later rounds, we see mostly an effect of competition

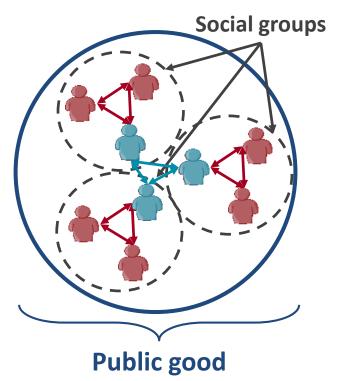


COMMUNICATION

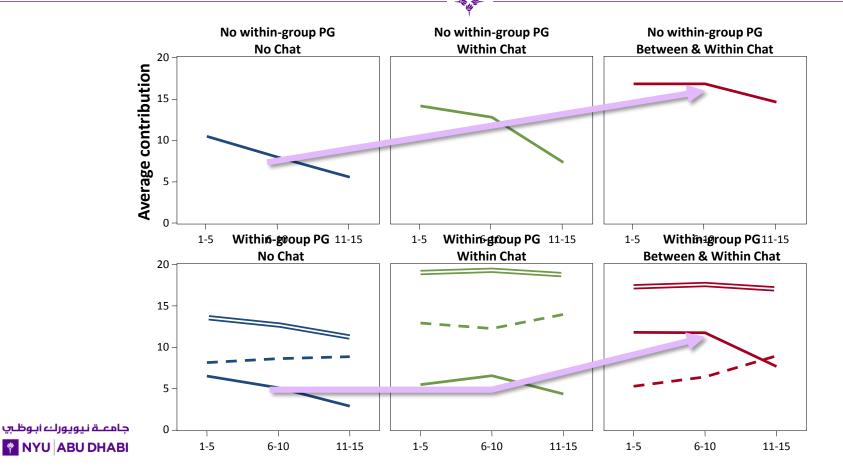
Bochet et al. (2006)

- Allow subjects to communicate but not make binding contracts
- 172 subjects play a VCM with n = 4, e = 10, 10 periods, MPCR = 0.4 with either no communication or communication through face-to-face, chat room, or numeric cheap talk

- Face to face communication dramatically increases cooperation
- Communication becomes less effective as it becomes more restricted

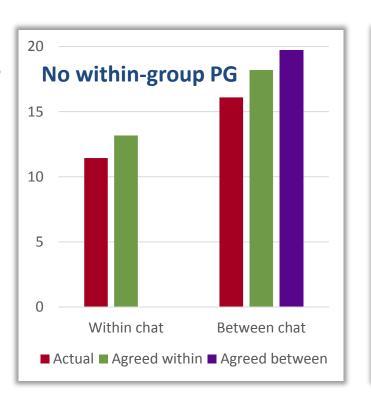


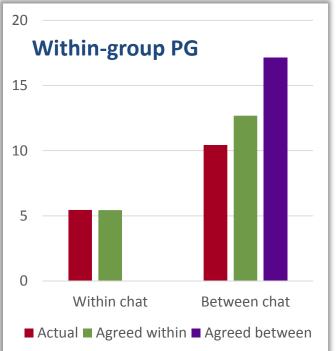
جامعـة نيويورك أبوظبي NYU ABU DHABI


COMMUNICATION AND SOCIAL STRUCTURE

Angelovski & Reuben (2018)

- What if a public good involves multiple social groups?
 - Communication and information about individual contributions are transmitted mostly within groups
- 432 subjects play a VCM with n = 9, e = 20, MPCR = 0.3, 15 periods, chat before periods 1, 6, and 11 with either no communication, within-group communication, or within- and between-group communication
- Availability or not of a second within-group public good (VCM with n = 3 and MPCR = 0.6)

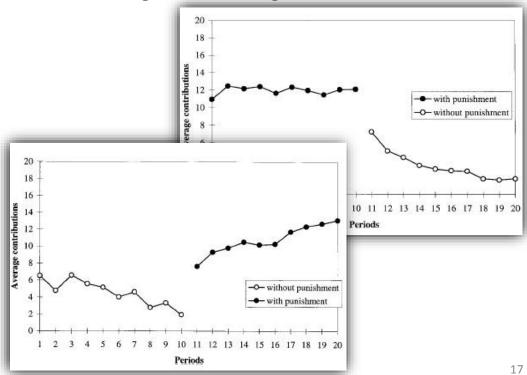

COMMUNICATION AND SOCIAL STRUCTURE



COMMUNICATION AND SOCIAL STRUCTURE

Angelovski & Reuben (2018)

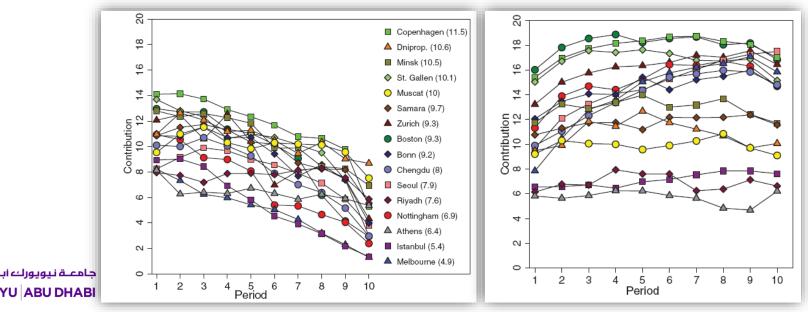
 Differences in contributions mirror differences in agreed contributions within groups



PEER PUNISHMENT

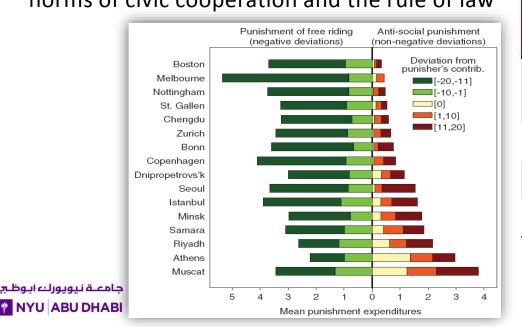
Fehr & Gächter (2000)

- After contributing, subjects can punish other group members at a cost to themselves (approximately 1 token per 3 tokens of damage), subjects know whether they are punished but do not know by whom
- 112 subjects play a VCM with n = 4, e = 20 tokens, 20 periods, MPCR = 0.4 with either no punishment or punishment


جامعـة نيويورك أبوظـي NYU ABU DHABI Punishment increases contributions, even with strangers matching

PUNISHMENT ACROSS SOCIETIES

Does peer punishment work across societies? (Herrmann et al. 2008)


- Punishment is pervasive but it does not always increase contributions
 - Works in Boston, Nottingham, Copenhagen, Bonn, Zurich, St. Gallen, Minsk, Seoul, Chengdu, Melbourne, but not in Dnipropetrovs'k, Samara, Athens, Istanbul, Riyadh, Muscat

PUNISHMENT ACROSS SOCIETIES

Does peer punishment work across societies? (Herrmann et al. 2008)

■ Failure of punishment is related to the amount of antisocial punishment (punishment of above-average cooperators) → correlated with perceptions of the importance of norms of civic cooperation and the rule of law

Independent variables	Punishment of free riders	Punishment of cooperators
Norms of civic cooperation	0.371**	-0.740**
Rule of law	0.067	-0.618**
Constant	-4.708***	2.422
Controls	Yes	Yes

What can we conclude with unrepresentative samples?

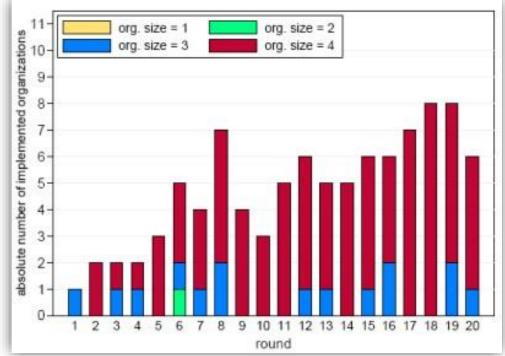
INSTITUTION FORMATION

Kosfeld et al. (2009)

Is it possible to form an institution that enforces cooperation if individuals cannot be excluded from the public good and they cannot be forced to join?

Three stages

- Participation stage: decide whether to be part of an institution at a cost shared by those who take part (k = 2 / n₀)
- Implementation stage: members of the institution decide whether to enforce the maximum contribution among themselves (by unanimity)
- **Contribution stage:** contribute to a VCM with *n* = 4, *e* = 20, and MPCR = 0.4

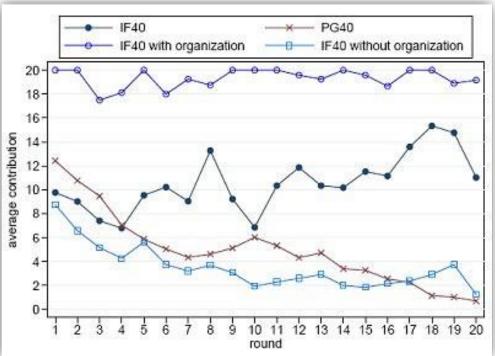


INSTITUTION FORMATION

-**(**)

Kosfeld et al. (2009)

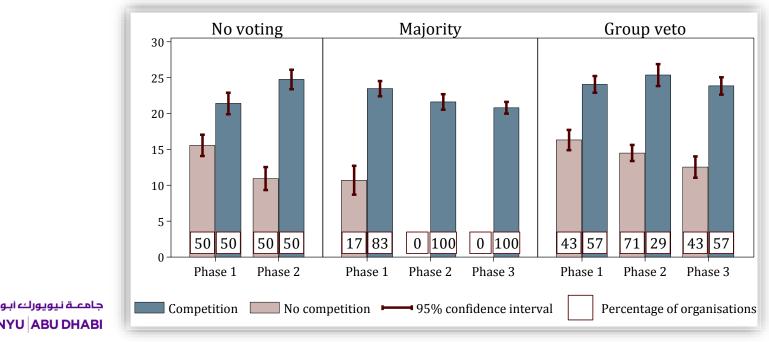
 Institutions are frequently and increasingly implemented but mostly only if all participate


جامعــة نيويورك ابـوظـي NYU ABU DHABI 🧳

INSTITUTION FORMATION

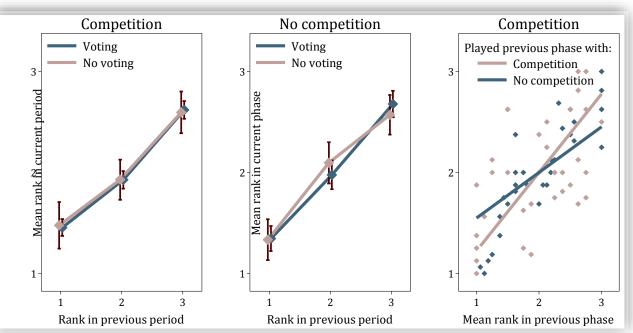
Kosfeld et al. (2009)

- Institutions are frequently and increasingly implemented but mostly only if all participate
- If one player doesn't join, the institution isn't implemented and contributions are low
 - Note that the institution pays as long as three participate
 → downside of conditional cooperation?


IMPLEMENTING INTERGROUP COMPETITION

In theory, intergroup competition can be a Pareto-improving institution, but will it be implemented and if not, why not?

- Individuals might dislike competing or the ensuing variation in income
- Heterogeneity in social preferences can lead to persistent differences in cooperation
- Individuals might not foresee the efficiency gains of competition and focus on the zero-sum prize
 Markussen et al. (2014)
- Subjects play a VCM with n = 3, e = 30, 24 periods, MPCR = 0.5
- Every 8 periods, groups vote whether they want competition or no competition
 - Compete with 2 other groups: each player in the group ranked 1st wins 10 and each player in the group ranked 3rd loses 10 (ties broken randomly)
- Three voting rules: Majority (5 votes) vs. Group veto (2 votes per group) vs. No voting


Markussen et al. (2014)

 Competition increases contributions. Its effect is immediate and independent of whether competition is imposed exogenously or implemented through voting

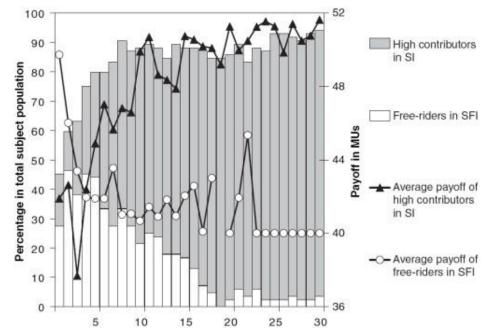
Markussen et al. (2014)

- However, some groups consistently cooperate more/less irrespective of whether they play with or without competition
 - About 80% of groups are net winners and 20% are net losers from competition

Markussen et al. (2014)

- 30% vote against competition → competition is implemented often with the majority rule but less than half the time with the group veto rule → not due to strategic voting
- Underestimate the increase in contributions but overestimate their chance of winning

📍 NYU ABU DHABI


IMPLEMENTING PEER PUNISHMENT

- Peer punishment works but do subjects choose to live in a world with punishment?
 Gürerk et al. (2006)
- VCM: n = 1-12, e = 20+20, 30 periods, MPCR = 1.6 / n
- Two institutions/groups
 - Punishment
 - No punishment
- Three stages
 - Stage 0: choose group
 - Stage 1: contribution stage
 - Stage 2: punishment stage (only in punishment group)

 The cost of punishment is 1 point for 3 points of damage جامعة نيويورك ابوظ
 NYU ABU DHABI

Gürerk et al. (2006)

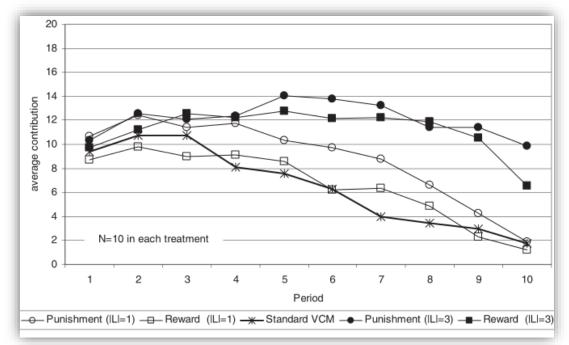
 As of period 4, high contributors make higher earnings in the punishment group than free-riders in the non-punishment group

IMPLEMENTING PEER PUNISHMENT & REWARDS

Choosing the carrot or the stick (Sutter et al. 2010)

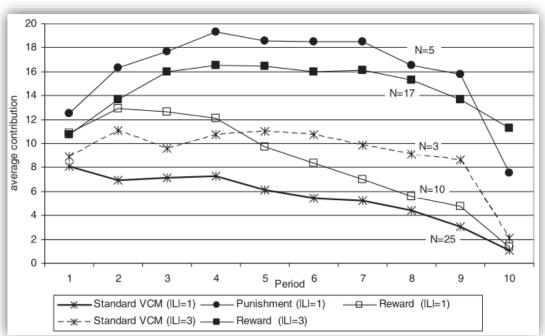
VCM: n = 4, e = 20, 10 periods, MPCR = 0.4

Three institutions


- Punishment vs. reward vs. none
 - High (costs 1 to punish/reward by 3) or low (costs 1 to punish/reward by 1)
- Institutions implemented either
 - Exogenously vs. endogenously
 - Vote for one of the three institutions (costs 10) or abstain

IMPLEMENTING PEER PUNISHMENT & REWARDS

Choosing the carrot or the stick (Sutter et al. 2010)

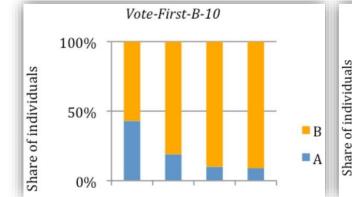

• Exogenous institutions: punishment and rewards with high leverage raise cooperation

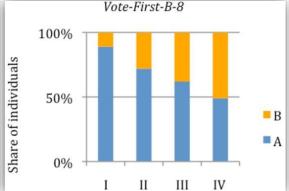
جامعـة نيويورك ابوظبي NYU ABU DHABI

Choosing the carrot or the stick (Sutter et al. 2010)

- Endogenous institutions: punishment with low leverage and rewards with high leverage increase cooperation
 - 45% vote with low leverage and 60% with high leverage
 - Cooperation is higher with <u>endogenously</u> chosen institutions!

THE PRISONERS' DILEMMA TRAP

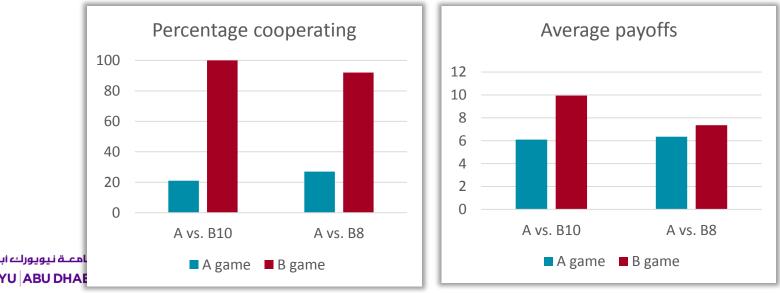

Barrett & Dannenberg (2017)


جامعية نيونوركه آب

YU ABU DHABI

- 300 subjects play 20 periods in groups of five
- Majority vote every 5 periods to decide which game to play: A game or B game (B10 or B8)
- A vs. B10: B10 played 89% of the time
- A vs. B8: B8 played 19% of the time

Α	Number of red choices by others				
game	0	1	2	3	4
Red	2	4	6	8	10
Black	5	7	9	11	13
	Number of red choices by others				
B-8	Nur	nber of r	ed choic	es by otl	hers
B-8 game	Nur 0	nber of r 1	ed choic 2	es by otl 3	hers 4
				-	_



THE PRISONERS' DILEMMA TRAP

Barrett & Dannenberg (2017)

- A vs. B10: Higher cooperation and payoffs in B10 than A
- A vs. B8: Higher cooperation and payoffs in B8 than A
- Groups that cooperate relatively well in A fail to move to B8, where they would do better

THE EFFECT OF DEMOCRACY

Dal Bo et al. (2010)

- Prisoners' dilemma game, 10 periods, random matching in group of four
- First play unmodified game
- Then vote on modified game but with 50% probability the vote is ignored and the computer assigns institution randomly
- 53% vote for modified game
 - Correlated positively with own cooperation and strategic sophistication, and negatively with other's cooperation

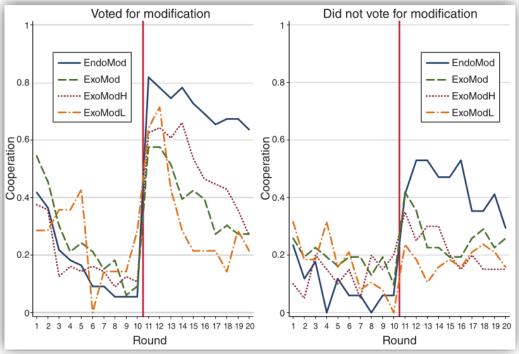
Unmodified	С	D
С	50,50	10,60
D	60,10	40,40
Modified	С	D
Modified C	C 50,50	D 10, 48

THE EFFECT OF DEMOCRACY

Dal Bo et al. (2010)

- More cooperation in modified game when endogenous!
- For subjects who voted for modification, democracy does not affect in the unmodified game but does in the modified game

	Ехо	Endo
Unmodified	15%	18%
Modified	50%	72%


جامعـة نيويورك ابوظـي NYU ABU DHABI

THE EFFECT OF DEMOCRACY

Dal Bo et al. (2010)

- More cooperation in modified game when endogenous!
- For subjects who voted for modification, democracy does not affect in the unmodified game but does in the modified game

	Exo-inf	Endo
Unmodified	-	18%
Modified	55%	72%

جامعـة نيويورك ابوظـي NYU ABU DHABI

- Angelovski, Andrej, and Ernesto Reuben. 2018. Intragroup Enforcement of Cooperation and the Provision of Intergroup Public Goods. Working paper.
- Barrett, Scott, and Astrid Dannenberg. 2017. "Tipping Versus Cooperating to Supply a Public Good." Journal of the European Economic Association 15(4): 910–41.
- Bochet, Olivier, Talbot Page, and Louis Putterman. 2006. "Communication and Punishment in Voluntary Contribution Experiments." *Journal of Economic Behavior & Organization* 60(1): 11–26.
- Dal Bó, Pedro, Andrew Foster, and Louis Putterman. 2010. "Institutions and Behavior: Experimental Evidence on the Effects of Democracy." American Economic Review 100(5): 2205–29.
- Falkinger, Josef, Ernst Fehr, Simon Gächter, and Rudolf Winter-Ebmer. 2000. "A Simple Mechanism for the Efficient Provision of Public Goods: Experimental Evidence." American Economic Review 90(1): 247–64.
- Fischbacher, Urs, and Simon Gächter. 2010. "Social Preferences, Beliefs, and the Dynamics of Free Riding in Public Goods Experiments." American Economic Review 100(1): 541–56.
- Fehr, Ernst, and Simon Gächter. 2000. "Cooperation and Punishment in Public Goods Experiments." American Economic Review 90(4): 980–94.
- Gürerk, Özgür, Bernd Irlenbusch, and Bettina Rockenbach. 2006. "The Competitive Advantage of Sanctioning Institutions." Science 312(5770): 108–11.

Hardin, Garrett. 1968. "The Tragedy of the Commons." Science 162(3859): 1243–48.
 جامعة نيويوراديا بوظيي

🥐 NYU ABU DHABI

- Herrmann, Benedikt, Christian Thöni, and Simon Gächter. 2008. "Antisocial Punishment Across Societies." Science 319(5868): 1362–67.
- Kosfeld, Michael, Akira Okada, and Arno Riedl. 2009. "Institution Formation in Public Goods Games." American Economic Review 99(4): 1335–55.
- Markussen, Thomas, Ernesto Reuben, and Jean-Robert Tyran. 2014. "Competition, Cooperation and Collective Choice." The Economic Journal 124(574): F163–95.
- Olson, Mancur. 1965. *The Logic of Collective Action*. Cambridge: Harvard University Press.
- Samuelson, Paul A. 1954. "The Pure Theory of Public Expenditure." *The Review of Economics and Statistics* 36(4): 387.
- Sutter, Matthias, Stefan Haigner, and Martin G Kocher. 2010. "Choosing the Carrot or the Stick? Endogenous Institutional Choice in Social Dilemma Situations." *Review of Economic Studies* 77(4): 1540–66.
- Tan, Jonathan H W, and Friedel Bolle. 2007. "Team Competition and the Public Goods Game." *Economics Letters* 96(1): 133–39.

