Brief introduction to the methodology of Neuroeconomics

Ernesto Reuben

Increasing interest in neuroeconomics

- Neuroeconomics is the use of data on brain processes to suggest new underpinnings for economic theories. Camerer
- Crash course on brain activity measurement.

Measuring brain function

Direct

Electrical activity

- Electrophysiology
- Electro-encephalography (EEG)
- Magneto-encephalography (MEG)

Indirect

Temporary disruption

 Transcranial Magnetic Stimulation (TMS)

Increased local blood flow

- Positron Emission Tomography (PET)
- Functional Magnetic Resonance Imaging (fMRI)

Electrophysiology

Direct measurement of neural activity

- Grid electrodes over cortex
- Depth electrode
- Electrodes

 implanted for
 monitoring of
 epileptic seizures

Electro-encephalography (EEG)

Measures neuronal activity generated by pyramidal cells

- Sensitive to conductivity of the skull and cranial tissue
- Difficulty pinpointing specific brain areas
- Measures electrical activity only in cells perpendicular to the skull

Magneto-encephalography (MEG)

Measures magnetic field of pyramidal neurons

- Sensitive to electromagnetic noise
- Difficulty pinpointing specific brain areas
- Measures electrical activity only in superficial neurons parallel to the skull

Compared to EEG

- Less sensitive to head shape
- Superior temporal resolution
- Not cap to wear
- Samples from less neurons

Transcranial Magnetic Stimulation (TMS)

Delivers a temporary current in a small area of the brain. The current interferes with processing in the brain.

- High temporal and good spatial precision
- Can be used to infer causality
- Affects only the surface of the brain

Positron-Emission Tomography (PET)

Measures decay of a radioactively-labeled chemical tracer

- O-15 Water (blood)
- F-18 N-methylspiperone (dopamine)
- C-11 carfentanil (opiate receptors)

Problems

- Invasive (injection)
- Limited number of scans
- Slow

Functional Magnetic Resonance Imaging (fMRI)

Measures amount of oxygen in the blood (blood flow)

fMRI compared to PET

- No exposure to radiation
 - fMRI can be repeated
- Better spatial and temporal resolution (still slow)
- PET can trace more than just blood (e.g., glucose or dopamine)

Data analysis

Stimulation - Control = Difference

Individual differences

More than pretty pictures?

Common limitations of brain imaging

- Small number of subjects
- Requires spatial smoothing (not all heads are equal)
 - Images are commonly smoothed to the MNI template
 - 305 brains: 78% males, mean age 23.4
- Activation areas are usually big
 - Use of Talairach coordinates of peak activation (postcentral gyrus) but also: motor cortex, frontal eye fields, intraparietal sulcus

More than pretty pictures?

Common limitations of brain imaging

Deciding the 'right' significance level

- Spatial resolution
 - Low activation of many neurons vs. high activation of a few neurons
- Confounding factors such as attention (more activation) and experience (less activation)

C Spatial and temporal resolution

fMRI and PET tell you where EEG and MEG tell you when

