Experimental Economics

- Loss Aversion
- Loss aversion and decision-making under risk
- Looking inside the brain
- Looking at close relatives
- Endowment effect (loss aversion when not under risk)
- Experience
- Loss aversion in risky and riskless situations
- Myopic loss aversion
- Probability Weighting
- A non-parametric estimate of probability weighting functions

Loss aversion

- Loss aversion
- 'The response to losses is consistently much more intense than the response to corresponding gains’ Kahneman 2003
- Two persons get their monthly report from a broker:
- A is told that her wealth went from $\$ 900,000$ to $\$ 750,000$.
- B is told that her wealth went from $\$ 200,000$ to $\$ 250,000$.
- Who has more reason to be satisfied with her financial situation?
- Who is happier today?

	Lottery Win (50\%)	Lottery Lose (50\%)	Safe Option
Choice A	$\$ 50$	$\$ 10$	$\$ 25$
Choice B	$\$ 30$	$-\$ 10$	$\$ 5$

Value function

- Prospect theory Kahneman and Tversky, 1979
- Descriptive model of risky choice in which the carriers of utility are gains and losses relative to a neutral reference point.
- Risk aversion for gains
- Steeper slope for losses than for gains (λ)
- Risk loving for losses

Losses inside the brain

- Losses hurt Breiter et al. 2001
- Subjects are given a gamble (no choice). Scanned (fMRI) before and after the gamble is resolved.
- 12 subjects
- 2 treatments: experiencing losses and anticipating losses
- Experiencing (anticipating) losses produce activation in the anterior insula.
- this region is associated with negative emotions (fear)

Losses inside the brain

- Losses are less exciting Tom et al. 2007
- Subjects accept/reject gambles. Scanned (fMRI) while deciding.
- 16 subjects
- 2 treatments: increasing losses and increasing gains
- Increasing losses produce decreasing activation in the ventral striatum (and in prefrontal cortices).
- this region is associated with the assignment of value

Losses inside the brain

- Neural loss aversion Tom et al. 2007
- The decrease in activation due to losses is larger then the increase in activation due to equivalent gains
- Correlated with behavioral loss aversion

Close relatives

- Capuchin monkeys Chen et al. 2006
- Strong preference for a gamble with gains over an equivalent gamble with a loss
- 1st treatment (2 choices)

13\% • 1 apple
87\% - 2 apples -0.5×1 apple

- 2nd treatment (2 choices) 29% • 2 apples -0.5×1 apple 71% • 1 apple $+0.5 \times 1$ apple

Endowment effect

- Endowment effect
- Willingness to pay is greater than willingness to accept
- Market for coffee mugs Kahneman et al. 1990
- 44 students
- 2 treatments:
- trading tokens (3 rounds) for training
- trading mugs (4 rounds)
- subjects randomly assigned to the role of buyer or seller

Tokens	Expected trades	Actual trades	Expected price	Actual price
Round 1	11	12	$\$ 3.75$	$\$ 3.75$
Round 2	11	11	$\$ 4.75$	$\$ 4.75$
Round 3	11	10	$\$ 4.25$	$\$ 4.25$

Endowment effect

- Endowment effect
- Willingness to pay is greater than willingness to accept
- Market for coffee mugs Kahneman et al. 1990
- 44 students
- 2 treatments:
- trading tokens (3 rounds) for training
- trading mugs (4 rounds)
- subjects randomly assigned to the role of buyer or seller

Mugs	Expected trades	Actual trades	Med. Asking price	Med. Selling price
Round 1	11	4	$\$ 2.75$	$\$ 5.25$
Round 2	11	1	$\$ 2.25$	$\$ 5.25$
Round 3	11	2	$\$ 2.25$	$\$ 5.25$
Round 4	11	2	$\$ 2.25$	$\$ 5.25$

Experimental Economics - Ernesto Reuben

Endowment effect

- Endowment effect in the field List 2004
- Trading candy for coffee mugs
- 253 (124 non-dealers, 129 dealers)
- 4 treatments:
- Endowed with candy (can trade for mug)
- Endowed with mug (can trade for candy)
- Endowed with neither (must choose mug or candy)
- Endowed with both (must give up mug or candy)

Endowment	Expected candy	Candy (non-dealers)	Candy (dealers)
Candy	50%	81%	47%
Mug	50%	23%	44%
None	50%	45%	51%
Both	50%	60%	44%

Endowment effect

- Endowment effect in the field List 2004
- Trading experience: non-dealers who trade often (top 10\%) do not exhibit an endowment effect.
- But ... Haigh and List (2005) finds that dealers exhibit more myopic loss aversion

Endowment	Expected candy	Candy (non-dealers)	Candy (dealers)
Candy	50%	81%	47%
Mug	50%	23%	44%
None	50%	45%	51%
Both	50%	60%	44%

Risky and riskless loss aversion

- Combining measures of loss aversion Gächter et al. 2007
- 660 Audi A4 owners
- 2 treatments:
- Between-subjects measure of loss aversion (control)
- Within-subjects measure of loss aversion
- Risky loss aversion:
- if the coin turns up heads, then you lose $€ x$; if the coin turns up tails, you win €6.
- €x varies from 2 to 7

Risky and riskless loss aversion

- Combining measures of loss aversion Gächter et al. 2007
- 660 Audi A4 owners
- 2 treatments:
- Between-subjects measure of loss aversion (control)
- Within-subjects measure of loss aversion
- Riskless loss aversion:
- Sell or buy a miniature Audi A4 model
- If the price is $€ x$, I am ready to sell (buy): yes/no
- $€ x$ varies from 0 to 10
- Becker, DeGroot and Marschak mechanism to determine outcome
- Between-subjects: endowed with the car or not
- Within-subjects: endowed with the car with $p=1 / 2$, use strategy method

Risky and riskless loss aversion

- Combining measures of loss aversion Gächter et al. 2006, 2007
- No difference in elicited values due to the strategy method
- Between: WTA = €6.03, WTP = €2.68 Within: WTA = €5.83, $\mathbf{W T P}=€ 2.96$
- Distribution of individual loss aversion (riskless)

Risky and riskless loss aversion

- Combining measures of loss aversion Gächter et al. 2007
- The measures of loss aversion are significantly positively correlated

Risky and riskless loss aversion

- Combining measures of loss aversion Gächter et al. 2007
- Risky λ is also correlated with other hypothetical λ 's elicited using different goods.
- But ... the correlation between the hypothetical λ 's is not significant
- Subjects hypothetical loss aversion was correlated to how 'important' the subject considered the good

	Fuel	Comfort	Safety	Information
λ Fuel Consumption	$\mathbf{1}$			
λ Comfort	$\mathbf{0 . 0 5}$	$\mathbf{1}$		
λ Safety	$\mathbf{- 0 . 0 7}$	$\mathbf{0 . 0 3}$	$\mathbf{1}$	
λ Information Systems	$\mathbf{0 . 0 0}$	$\mathbf{- 0 . 0 5}$	$\mathbf{- 0 . 0 8}$	$\mathbf{1}$
λ Risky	0.34	$\mathbf{0 . 1 4}$	0.35	$\mathbf{0 . 1 1}$

Myopic loss aversion

- Myopic loss aversion
- Would you accept this gamble?
- $\$ 20$ with $p=0.50,-\$ 10$ with $p=0.50$
- How about this one?
- $\$ 40$ with $p=0.25, \$ 10$ with $p=0.50,-\$ 20$ with $p=0.25$
- And this one?
- $\$ 80$ with $p=0.0625$, $\$ 50$ with $p=0.25$, $\$ 20$ with $p=0.375$, $-\$ 10$ with $p=0.25,-\$ 40$ with $p=0.0625$
- Loss aversion + short evaluation period
- Explanation for the equity premium puzzle? Benartzi and Thaler 1995

Myopic loss aversion

- Myopic loss aversion Gneezy and Potters 1997
- 84 students
- 2 treatments (between-subjects):
- High frequency of feedback
- Low frequency of feedback
- Subjects bet $0 \leq x \leq 200$ cents on a lottery
- Probability $1 / 3$ win $2.5 x$
- Probability $2 / 3$ lose x
- Earnings equal 200 cents + lottery earnings
- 12 rounds
- High frequency of feedback
- Draw one round at a time
- Low frequency of feedback
- Draw three rounds at once

Myopic loss aversion

- Myopic loss aversion Gneezy and Potters 1997

Investment in lottery	High	Low
Rounds 1-3	52.0	$\mathbf{6 6 . 7}$
Rounds 4-6	$\mathbf{4 4 . 8}$	$\mathbf{6 3 . 7}$
Rounds 7-9	54.7	$\mathbf{7 1 . 9}$
Rounds 1-9	50.5	67.4
Rounds 10-12	$\mathbf{3 9 \%}$	$\mathbf{4 8 . 9 \%}$

- Myopic loss aversion in the market Gneezy et al. 2003
- Trade asset that pays 200 cents with $p=1 / 3$ and 0 with $p=2 / 3$
- Average price:
- High frequency of feedback: 49.3 cents
- Low frequency of feedback: 58.4 cents
- Low evaluation periods \rightarrow more risk taking

Probability Weighting

The Marshak-Machina probability triangle

- The common ratio effect
- Three outcomes
- Bad = \$0
- Middle = \$300
- Good $=\$ 400$
- Choice 1
- $\mathrm{L}_{\mathrm{A}}: \$ 300$ for sure
- $\mathrm{L}_{\mathrm{B}}: p=0.20$ of $\$ 0, p=0.80$ of $\$ 400$
- Choice 2
- $\mathrm{L}_{\mathrm{C}}: p=0.75$ of $\$ 0, p=0.25$ of $\$ 300$
- $\mathrm{L}_{\mathrm{D}}: p=0.80$ of $\$ 0, p=0.20$ of $\$ 400$

Probability Weighting

The Marshak-Machina probability triangle

- The common ratio effect
- Three outcomes
- Bad = \$0
- Middle = \$300
- Good = \$400
- Choice 1
- $\mathrm{L}_{\mathrm{A}}: \$ 300$ for sure
- $\mathrm{L}_{\mathrm{B}}: p=0.20$ of $\$ 0, p=0.80$ of $\$ 400$
- Choice 2
- $\mathrm{L}_{\mathrm{C}}: p=0.75$ of $\$ 0, p=0.25$ of $\$ 300$
- $\mathrm{L}_{\mathrm{D}}: p=0.80$ of $\$ 0, p=0.20$ of $\$ 400$

Probability Weighting

The Marshak-Machina probability triangle

- The common ratio effect
- Three outcomes
- Bad = \$0
- Middle = \$300
- Good = \$400
- Choice 1
- $\mathrm{L}_{\mathrm{A}}: \$ 300$ for sure
- $\mathrm{L}_{\mathrm{B}}: p=0.20$ of $\$ 0, p=0.80$ of $\$ 400$
- Choice 2
- $\mathrm{L}_{\mathrm{C}}: p=0.75$ of $\$ 0, p=0.25$ of $\$ 300$
- $\mathrm{L}_{\mathrm{D}}: p=0.80$ of $\$ 0, p=0.20$ of $\$ 400$

Explained by probability weighting

Probability Weighting

S-shaped probability weighting function

- Eliciting Probability Weighting Functions
- Usually done with parametric estimations
- Assumes a functional form
- Joint estimation of utility function and probability weights
- An inverted S-shape is usually found
- Underestimation of high probabilities (insure TV)
- Overestimation of low probabilities (buy lotto)

Probability Weighting

- Eliciting Probability Weighting Functions van de Kuilen et al. 2006
- Step 1: Elicit utility function

Note that

$$
\mathrm{U}\left(x_{2}\right)-\mathrm{U}\left(x_{1}\right)=\mathrm{U}(60)-\mathrm{U}\left(x_{1}\right)
$$

Probability Weighting

- Eliciting Probability Weighting Functions van de Kuilen et al. 2006
- Step 1: Elicit utility function

Note that

$$
\mathrm{U}\left(x_{2}\right)-\mathrm{U}\left(x_{1}\right)=\mathrm{U}(60)-\mathrm{U}\left(x_{1}\right)
$$

Probability Weighting

- Eliciting Probability Weighting Functions van de Kuilen et al. 2006
- Step 2: Elicit probability weighting function

E.g., to find $w^{-1}(0.5): p=0$ and $q=1$

Probability Weighting

- Eliciting Probability Weighting Functions van de Kuilen et al. 2006
- Step 2: Elicit probability weighting function

E.g., to find $w^{-1}(0.5): p=0$ and $q=1$

Probability Weighting

$w^{-1}(p)$	Mean	Median	St Dev
0.125	0.33	0.285	0.228
0.250	0.441	0.430	0.223
0.500	0.608	0.620	0.193
0.750	0.793	0.820	0.150
0.875	0.872	0.910	0.132

Experimental Economics - Ernesto Reuben

- Results van de Kuilen et al. 2006
- Mostly convex functions
- Usual parametric tests do not perform that well

