Experimental Economics

Loss Aversion

- Loss aversion and decision-making under risk
 - Looking inside the brain
 - Looking at close relatives
- Endowment effect (loss aversion when not under risk)
 - Experience
- Loss aversion in risky and riskless situations
- Myopic loss aversion
- Probability Weighting
 - A non-parametric estimate of probability weighting functions

Loss aversion

Loss aversion

- 'The response to losses is consistently much more intense than the response to corresponding gains' Kahneman 2003
- Two persons get their monthly report from a broker:
 - A is told that her wealth went from \$900,000 to \$750,000.
 - B is told that her wealth went from \$200,000 to \$250,000.
 - Who has more reason to be satisfied with her financial situation?
 - Who is happier today?

	Lottery Win (50%)	Lottery Lose (50%)	Safe Option
Choice A	\$50	\$10	\$25
Choice B	\$30	-\$10	\$5

Value function

- **Prospect theory** Kahneman and Tversky, 1979
- Descriptive model of risky choice in which the carriers of utility are gains and losses relative to a neutral reference point.
 - Risk aversion for gains
 - Steeper slope for losses than for gains (λ)
 - Risk loving for losses

Losses inside the brain

- Losses hurt Breiter et al. 2001
 - Subjects are given a gamble (no choice). Scanned (fMRI) before and after the gamble is resolved.
 - 12 subjects
 - 2 treatments: experiencing losses and anticipating losses
 - Experiencing (anticipating) losses produce activation in the anterior insula.
 - this region is associated with negative emotions (fear)

Losses inside the brain

- Losses are less exciting Tom et al. 2007
 - Subjects accept/reject gambles. Scanned (fMRI) while deciding.
 - 16 subjects
 - 2 treatments: increasing losses and increasing gains
 - Increasing losses produce decreasing activation in the ventral striatum (and in prefrontal cortices).
 - this region is associated with the assignment of value

Losses inside the brain

- Neural loss aversion Tom et al. 2007
 - The decrease in activation due to losses is larger then the increase in activation due to equivalent gains
 - Correlated with behavioral loss aversion

Experimental Economics - Ernesto Reuben

Close relatives

- Capuchin monkeys Chen et al. 2006
 - Strong preference for a gamble with gains over an equivalent gamble with a loss
- 1st treatment (2 choices)
- 13% 1 apple
- 87% 2 apples -0.5×1 apple
 - 2nd treatment (2 choices)
- 29% 2 apples 0.5×1 apple
- 71% 1 apple + 0.5×1 apple

Endowment effect

- Willingness to pay is greater than willingness to accept
- Market for coffee mugs Kahneman et al. 1990
 - 44 students
 - 2 treatments:
 - trading tokens (3 rounds) for training
 - trading mugs (4 rounds)
 - subjects randomly assigned to the role of buyer or seller

Tokens	Expected trades	Actual trades	Expected price	Actual price
Round 1	11	12	\$3.75	\$3.75
Round 2	11	11	\$4.75	\$4.75
Round 3	11	10	\$4.25	\$4.25

Endowment effect

- Willingness to pay is greater than willingness to accept
- Market for coffee mugs Kahneman et al. 1990
 - 44 students
 - 2 treatments:
 - trading tokens (3 rounds) for training
 - trading mugs (4 rounds)
 - subjects randomly assigned to the role of buyer or seller

Mugs	Expected trades	Actual trades	Med. Asking price	Med. Selling price
Round 1	11	4	\$2.75	\$5.25
Round 2	11	1	\$2.25	\$5.25
Round 3	11	2	\$2.25	\$5.25
Round 4	11	2	\$2.25	\$5.25

- Endowment effect in the field List 2004
- Trading candy for coffee mugs
 - 253 (124 non-dealers, 129 dealers)
 - 4 treatments:
 - Endowed with candy (can trade for mug)
 - Endowed with mug (can trade for candy)
 - Endowed with neither (must choose mug or candy)
 - Endowed with both (must give up mug or candy)

Endowment	Expected candy	Candy (non-dealers)	Candy (dealers)
Candy	50%	81%	47%
Mug	50%	23%	44%
None	50%	45%	51%
Both	50%	60%	44%

- Endowment effect in the field List 2004
 - Trading experience: non-dealers who trade often (top 10%) do not exhibit an endowment effect.
 - But ... Haigh and List (2005) finds that dealers exhibit more myopic loss aversion

Endowment	Expected candy	Candy (non-dealers)	Candy (dealers)
Candy	50%	81%	47%
Mug	50%	23%	44%
None	50%	45%	51%
Both	50%	60%	44%

- Combining measures of loss aversion Gächter et al. 2007
 - 660 Audi A4 owners
 - 2 treatments:
 - Between-subjects measure of loss aversion (control)
 - Within-subjects measure of loss aversion
 - Risky loss aversion:
 - if the coin turns up heads, then you lose €x; if the coin turns up tails, you win €6.
 - \oiint varies from 2 to 7

- Combining measures of loss aversion Gächter et al. 2007
 - 660 Audi A4 owners
 - 2 treatments:
 - Between-subjects measure of loss aversion (control)
 - Within-subjects measure of loss aversion
 - Riskless loss aversion:
 - Sell or buy a miniature Audi A4 model
 - If the price is $\notin x$, I am ready to sell (buy): yes/no
 - rightarrow x varies from 0 to 10
 - Becker, DeGroot and Marschak mechanism to determine outcome
 - Between-subjects: endowed with the car or not
 - Within-subjects: endowed with the car with $p = \frac{1}{2}$, use strategy method

- Combining measures of loss aversion Gächter et al. 2006, 2007
 - No difference in elicited values due to the strategy method
- Between: WTA = €6.03, WTP = €2.68 Within: WTA = €5.83, WTP = €2.96
 - Distribution of individual loss aversion (riskless)

- Combining measures of loss aversion Gächter et al. 2007
 - The measures of loss aversion are significantly positively correlated

Experimental Economics - Ernesto Reuben

- Combining measures of loss aversion Gächter et al. 2007
 - Risky λ is also correlated with other hypothetical λ 's elicited using different goods.
 - But ... the correlation between the hypothetical λ 's is not significant
 - Subjects hypothetical loss aversion was correlated to how 'important' the subject considered the good

	Fuel	Comfort	Safety	Information
λ Fuel Consumption	1			
λ Comfort	0.05	1		
λ Safety	-0.07	0.03	1	
λ Information Systems	0.00	-0.05	-0.08	1
λRisky	0.34	0.14	0.35	0.11

Myopic loss aversion

Myopic loss aversion

- Would you accept this gamble?
 - \$20 with p = 0.50, -\$10 with p = 0.50
- How about this one?
 - \$40 with p = 0.25, \$10 with p = 0.50, -\$20 with p = 0.25
- And this one?
 - \$80 with p = 0.0625, \$50 with p = 0.25, \$20 with p = 0.375, -\$10 with p = 0.25, -\$40 with p = 0.0625
- Loss aversion + short evaluation period
 - Explanation for the equity premium puzzle? Benartzi and Thaler 1995

Myopic loss aversion

- **Myopic loss aversion** Gneezy and Potters 1997
 - 84 students
 - 2 treatments (between-subjects):
 - High frequency of feedback
 - Low frequency of feedback
 - Subjects bet $0 \le x \le 200$ cents on a lottery
 - Probability 1/3 win 2.5x
 - Probability 2/3 lose *x*
 - Earnings equal 200 cents + lottery earnings
 - 12 rounds
 - High frequency of feedback
 - Draw one round at a time
 - Low frequency of feedback
 - Draw three rounds at once

Myopic loss aversion

• **Myopic loss aversion** Gneezy and Potters 1997

Investment in lottery	High	Low
Rounds 1-3	52.0	66.7
Rounds 4-6	44.8	63.7
Rounds 7-9	54.7	71.9
Rounds 1-9	50.5	67.4
Rounds 10-12	39%	48.9%

- Myopic loss aversion in the market Gneezy et al. 2003
 - Trade asset that pays 200 cents with p = 1/3 and 0 with p = 2/3
 - Average price:
 - High frequency of feedback: 49.3 cents
 - Low frequency of feedback: 58.4 cents
 - Low evaluation periods \rightarrow more risk taking

The common ratio effect

- Three outcomes
 - Bad = 0
 - Middle = 300
 - Good = \$400
- Choice 1
 - L_A: \$300 for sure
 - $L_B: p = 0.20 \text{ of } \$0, p = 0.80 \text{ of } \400
- Choice 2
 - $L_C: p = 0.75$ of \$0, p = 0.25 of \$300
 - $L_D: p = 0.80$ of \$0, p = 0.20 of \$400

The Marshak-Machina probability triangle

The common ratio effect

- Three outcomes
 - Bad = 0
 - Middle = 300
 - Good = \$400
- Choice 1
 - L_A: \$300 for sure
 - $L_B: p = 0.20 \text{ of } \$0, p = 0.80 \text{ of } \400
- Choice 2
 - $L_C: p = 0.75 \text{ of } \$0, p = 0.25 \text{ of } \300
 - $L_D: p = 0.80$ of \$0, p = 0.20 of \$400

The common ratio effect

- Three outcomes
 - Bad = 0
 - Middle = \$300
 - Good = \$400
- Choice 1
 - L_A: \$300 for sure
 - $L_B: p = 0.20 \text{ of } \$0, p = 0.80 \text{ of } \400
- Choice 2
 - $L_C: p = 0.75$ of \$0, p = 0.25 of \$300
 - $L_D: p = 0.80 \text{ of } \$0, p = 0.20 \text{ of } \400

Explained by probability weighting

S-shaped probability weighting function

Experimental Economics – Ernesto Reuben

- Eliciting Probability Weighting Functions
- Usually done with parametric estimations
 - Assumes a functional form
 - Joint estimation of utility function and probability weights
- An inverted S-shape is usually found
 - Underestimation of high probabilities (insure TV)
 - Overestimation of low probabilities (buy lotto)

- Eliciting Probability Weighting Functions van de Kuilen et al. 2006
 - Step 1: Elicit utility function

- Eliciting Probability Weighting Functions van de Kuilen et al. 2006
 - Step 1: Elicit utility function

 $U(x_2) - U(x_1) = U(60) - U(x_1)$

- Eliciting Probability Weighting Functions van de Kuilen et al. 2006
 - Step 2: Elicit probability weighting function

- Eliciting Probability Weighting Functions van de Kuilen et al. 2006
 - Step 2: Elicit probability weighting function

