

EXPERIMENTAL ECONOMICS DECISION-MAKING UNDER RISK

جامعـة نيويورك ابوظـي 🖐 NYU ABU DHABI

Ernesto Reuben

THE ECONOMICS OF RISK AVERSION

How to elicit risk preferences?

Holt & Laury (2002)

- 212 subjects choose between a series of lotteries
- Treatments: Low (≈ \$2.50) vs. High (from 20x to 90x more) vs. High hypothetical

Option A	Option B	Expected difference
1/10 of \$180, 9/10 of \$144	1/10 of \$347, 9/10 of \$9	\$105
2/10 of \$180, 8/10 of \$144	2/10 of \$347, 8/10 of \$9	\$75
3/10 of \$180, 7/10 of \$144	3/10 of \$347, 7/10 of \$9	\$44
4/10 of \$180, 6/10 of \$144	4/10 of \$347, 6/10 of \$9	\$14
5/10 of \$180, 5/10 of \$144	5/10 of \$347, 5/10 of \$9	(\$16)
6/10 of \$180, 4/10 of \$144	6/10 of \$347, 4/10 of \$9	(\$46)
7/10 of \$180, 3/10 of \$144	7/10 of \$347, 3/10 of \$9	(\$76)
8/10 of \$180, 2/10 of \$144	8/10 of \$347, 2/10 of \$9	(\$107)
9/10 of \$180, 1/10 of \$144	9/10 of \$347, 1/10 of \$9	(\$137)
10/10 of \$180, 0/10 of \$144	10/10 of \$347, 0/10 of \$9	(\$167)

How to elicit risk preferences?

Holt & Laury (2002)

Results

- Almost no risk lovers 8%
- A few risk neutral 26%
- Most are risk-averse 66%
- No difference between Low and High hypothetical
- Clear difference between Low and High
 - More risk aversion → 81%

How do they explain increasing relative risk aversion?

Hybrid of CRRA and CARA with noisy decision making

COMPLEX VS. SIMPLE RISK-PREFERENCE ELICITATION

Dave et al. (2010)

- 881 subjects choose between a series of lotteries
- Treatments: Simple (Eckel & Grossman 2002) vs. complex (Holt & Laury 2002)

Lottery	Chose A, B, C, D, E, or F
Α	1/2 of \$70, 1/2 of \$2
В	1/2 of \$60, 1/2 of \$12
С	1/2 of \$52, 1/2 of \$16
D	1/2 of \$44, 1/2 of \$20
E	1/2 of \$36, 1/2 of \$24
F	1/2 of \$28, 1/2 of \$28

Choose A or B in each row		
Row	Α	В
1	1/10 of \$40, 9/10 of \$32	1/10 of \$77, 9/10 of \$2
2	2/10 of \$40, 8/10 of \$32	2/10 of \$77, 8/10 of \$2
3	3/10 of \$40, 7/10 of \$32	3/10 of \$77, 7/10 of \$2
4	4/10 of \$40, 6/10 of \$32	4/10 of \$77, 6/10 of \$2
5	5/10 of \$40, 5/10 of \$32	5/10 of \$77, 5/10 of \$2
6	6/10 of \$40, 4/10 of \$32	6/10 of \$77, 4/10 of \$2
7	7/10 of \$40, 3/10 of \$32	7/10 of \$77, 3/10 of \$2
8	8/10 of \$40, 2/10 of \$32	8/10 of \$77, 2/10 of \$2
9	9/10 of \$40, 1/10 of \$32	9/10 of \$77, 1/10 of \$2
10	10/10 of \$40, 0/10 of \$32	10/10 of \$77, 0/10 of \$2

COMPLEX VS. SIMPLE RISK-PREFERENCE ELICITATION

Dave et al. (2010)

Again, mostly risk-averse 66% but different estimates depending on the technique:

Complex detects more risk aversion

COMPLEX VS. SIMPLE RISK-PREFERENCE ELICITATION

Dave et al. (2010)

- Predictive accuracy of estimated coefficients by demographics
 - With all subjects, Complex has a higher predictive accuracy
 - With low-math literacy subjects, Simple has a higher predictive accuracy

Utility maximization and risk-preference elicitation

Choi et al. (2007)

- 93 subjects select 50 portfolios, each corresponding to a point in a budget constraint $p_1x_1 + p_2x_2 = W$, where W is their wealth and x_i is their investment in security i, which pays with probability π_i and is priced at p_i
- Choices made with a graphical interface

Utility maximization and risk-preference elicitation

Choi et al. (2007)

- Measure consistency with utility maximization using the critical cost efficiency index (CCEI) of Afriat (1972)
 - Minimum amount by which one has to modify budget constraints to eliminate all GARP violations

Utility maximization and risk-preference elicitation

Choi et al. (2007)

- High levels of consistency with utility maximization: 80 percent have a CCEI of 0.95 or more
- Similar risk aversion coefficient estimates to other methodologies

Choi et al. (2014)

- No correlation between estimated risk aversion coefficients and CCEI
- CCEI correlates positively with income, household wealth, education, and being male and negatively with age

Non-parametric elicitation of utility functions

van de Kuilen & Wakker (2011)

Find the value x₁ that makes you indifferent between A and B

Find the value x₂ that makes you indifferent between C and D

etc.

SMALL-STAKE RISK AVERSION

What are we eliciting with small-stake experiments? (Rabin 2000)

• Assume your wealth is \$1,000. Do you accept this lottery? Example with $U(x) = x^{(1-\gamma)}/(1-\gamma)$

$$\frac{1}{2} \times \$980^{(1-\gamma)}/(1-\gamma) + \frac{1}{2} \times \$1,021^{(1-\gamma)}/(1-\gamma) < \$1,000^{(1-\gamma)}/(1-\gamma) \rightarrow \gamma > 2.38091$$

• What about the following lotteries?

$$\frac{1}{2}$$
 × \$843^(1-\nu) + \frac{1}{2} × \$1,250^(1-\nu) < \$1,000^(1-\nu)/(1-\nu)

$$\frac{1}{2}$$
 × \$732^(1-\nu) + $\frac{1}{2}$ × \$1,750^(1-\nu) < \$1,000^(1-\nu)/(1-\nu)

$$\frac{1}{2} \times \$639^{(1-\gamma)} + \frac{1}{2} \times \$4,000^{(1-\gamma)} < \$1,000^{(1-\gamma)}/(1-\gamma)$$

$$\frac{1}{2} \times \$605^{(1-\gamma)} + \frac{1}{2} \times \$301,000^{(1-\gamma)} < \$1,000^{(1-\gamma)}/(1-\gamma)$$

SMALL-STAKES RISK AVERSION?

SMALL-STAKE RISK AVERSION

What are we eliciting with small-stake experiments? (Rabin 2000)

• Assume your wealth is \$1,000. Do you accept this lottery? Example with $U(x) = x^{(1-\gamma)}/(1-\gamma)$

$$\frac{1}{2} \times \$980^{(1-\gamma)}/(1-\gamma) + \frac{1}{2} \times \$1,021^{(1-\gamma)}/(1-\gamma) < \$1,000^{(1-\gamma)}/(1-\gamma) \rightarrow \gamma > 2.38091$$

• What about the following lotteries?

$$\frac{1}{2} \times \$843^{(1-\gamma)} + \frac{1}{2} \times \$1,250^{(1-\gamma)} < \$1,000^{(1-\gamma)}/(1-\gamma)$$
 $\frac{1}{2} \times \$732^{(1-\gamma)} + \frac{1}{2} \times \$1,750^{(1-\gamma)} < \$1,000^{(1-\gamma)}/(1-\gamma)$
 $\frac{1}{2} \times \$639^{(1-\gamma)} + \frac{1}{2} \times \$4,000^{(1-\gamma)} < \$1,000^{(1-\gamma)}/(1-\gamma)$
 $\frac{1}{2} \times \$605^{(1-\gamma)} + \frac{1}{2} \times \$301,000^{(1-\gamma)} < \$1,000^{(1-\gamma)}/(1-\gamma)$

 "[Loss aversion] is a departure from expected-utility theory that provides a direct explanation for modest-scale risk aversion" (Rabin 2000)

LOSS AVERSION

"The response to losses is consistently much more intense than the response to corresponding gains." (Kahneman 2003)

- Two persons get their monthly report from a broker:
 - A is told that her wealth went from \$900,000 to \$750,000.
 - B is told that her wealth went from \$200,000 to \$250,000.
 - Who is happier today?

	Lottery (50%)	Lottery (50%)	Safe option
Choice A	\$50	\$10	\$25
Choice B	\$30	- \$10	\$5

LOSS AVERSION INSIDE THE BRAIN

Can we see differences in brain activity for gains and losses? (Tom et al. 2007)

- 16 participants who accept/reject gambles while they are scanned using fMRI
- Treatments: increasing losses and increasing gains
- Activation in ventral striatum (associated with assignment of value)
 - Larger decrease in activation due to losses than the increase due to equivalent gains
- Difference in activation is correlated with behavioral loss aversion!

LOSS AVERSION AMONG OUR CLOSE RELATIVES

When did loss aversion evolve? Are capuchin monkeys loss averse? (Chen et al. 2006)

First treatment (2 choices)

■ 1 apple 13%

■ 2 apples – 0.5 × 1 apple 87%

Second treatment (2 choices)

■ 2 apples – 0.5 × 1 apple **29**%

■ 1 apple + 0.5 × 1 apple **71%**

 Strong preference for a gamble with gains over an equivalent gamble with a loss

MYOPIC LOSS AVERSION

Can loss aversion explain the equity premium puzzle?

Not without additional assumptions

Myopic loss aversion (Benartzi & Thaler 1995)

- Assume Loss aversion and narrow framing
 - Would you accept this gamble?
 \$50 with p = 0.333, -\$20 with p = 0.667
 - How about this one?

\$150 with p = 0.037, \$80 with p = 0.222, \$10 with p = 0.444, -\$60 with p = 0.297

MYOPIC LOSS AVERSION

Gneezy & Potters (1997)

- 84 subjects bet 9 times an amount $0 \le x \le 200$ cents on a lottery that pays 2.5x with probability 33% and -x with probability 67%
- Treatments: Feedback frequency is high (after every bet) or low (after every three bets)

Investment in lottery (x)	High	Low
Rounds 1-3	52.0	66.7
Rounds 4-6	44.8	63.7
Rounds 7-9	54.7	71.9
Rounds 1-9	50.5	67.4

ENDOWMENT EFFECT

"... goods that are included in the individual's endowment will be more highly valued than those not held in the endowment, ceteris paribus." (Thaler 1980)

ENDOWMENT EFFECT

Evidence of the endowment effect (List 2004)

- 124 subjects who could "trade" a candy or a mug after being randomly-endowed with:
- Candy (could trade for mug), mug (could trade for candy), neither (must chose candy or mug), or both (must give up candy or mug)

	Endowed with	Ended with candy
Without	Candy	81%
experience	Mug	23%
\rightarrow	Neither	45%
_	Both	60%

But experience doesn't always help
 card dealers exhibit more myopic loss
 aversion (Haigh & List 2005)

 Does market experience reduce the endowment effect? → repeat the same experiment with 129 similar subjects with market-trading experience (card dealers)

	Endowed with	Ended with candy
With experience	Candy	47%
	Mug	44%
	Neither	51%
	Both	44%

ENDOWMENT EFFECT AMONG OUR CLOSE RELATIVES

When did the endowment effect evolve? Are chimpanzees affected? (Brosnan et al. 2007)

 33 chimpanzees chose between a juice popsicle or a tube of peanut butter either after they were randomly endowed with one of them or not

Of those not initially endowed

→ 58% ended with peanut butter

Of those **endowed** with **peanut butter**

→ 79% ended with peanut butter

Of those not initially endowed

→ 42% ended with a juice popsicle

Of those **endowed** with **juice popsicle**

→ 58% ended with a juice popsicle

EXPLAINING THE ENDOWMENT EFFECT

- Who just won a silver medal?
- Bronze medalists are happier because they did not expect to win (Medvec et al. 1995)
 - → Reference-dependent risk attitudes (Köszegi and Rabin 2007)

جآمعة نيويورك ابوظي

EXPLAINING THE ENDOWMENT EFFECT

Consider buying a mug

• The utility of the mug is 1, the price is p, utility is linear in money, and losses are weighted by λ

• If your expectation is to not buy?

Utility of not buying: 0 (reference point)

• Utility of buying: $1 - \lambda p$

• If your expectation is to buy?

Utility of buying: 0 (reference point)

• Utility of not buying: $p - \lambda$

REFERENCE-DEPENDENT PREFERENCES

Reference-dependent preferences and the endowment effect (Goette et al. 2014)

665 subjects are endowed with either a mug or 10 CHF and submit either their
 WTA or their WTP for the mug

 Treatments vary the probability of forced exchange: either 0%, 25%, 50%, 75%, or 99%

REFERENCES

- Afriat, Sydney N. 1972. "Efficiency Estimation of Production Functions." International Economic Review 13(3): 568.
- Benartzi, S., and R. H. Thaler. 1995. "Myopic Loss Aversion and the Equity Premium Puzzle." The Quarterly Journal of Economics 110(1): 73–92.
- Brosnan, Sarah F. et al. 2007. "Endowment Effects in Chimpanzees." Current Biology 17(19): 1704–7.
- Chen, M Keith, Venkat Lakshminarayanan, and Laurie R Santos. 2006. "How Basic Are Behavioral Biases? Evidence from Capuchin Monkey Trading Behavior." Journal of Political Economy 114(3): 517–37.
- Choi, Syngjoo, Raymond Fisman, Douglas M Gale, and Shachar Kariv. 2007. "Consistency and Heterogeneity of Individual Behavior under Uncertainty." American Economic Review 97(5): 1921–38.
- Choi, Syngjoo, Shachar Kariv, Wieland Müller, and Dan Silverman. 2014. "Who Is (More) Rational?" *American Economic Review* 104(6): 1518–50.
- Dave, Chetan, Catherine C Eckel, Cathleen A Johnson, and Christian Rojas. 2010. "Eliciting Risk Preferences: When Is Simple Better?" Journal of Risk and Uncertainty 41: 219–43.
- Eckel, Catherine C, and Philip J Grossman. 2002. "Sex Differences and Statistical Stereotyping in Attitudes toward Financial Risk."
 Evolution and Human Behavior 23: 281–95.
- Goette, Lorenz, Annette Harms, and Charles Sprenger. 2014. Randomizing Endowments: An Experimental Study of Rational Expectations and Reference- Dependent Preferences.

REFERENCES

- Gneezy, Uri, and Jan Potters. 1997. "An Experiment on Risk Taking and Evaluation Periods." The Quarterly Journal of Economics 112(2): 631–45.
- Haigh, Michael S, and John A List. 2005. "Do Professional Traders Exhibit Myopic Loss Aversion? An Experimental Analysis." *The Journal of Finance* 60(1): 523–34.
- Holt, Charles A, and Susan K Laury. 2002. "Risk Aversion and Incentive Effects." American Economic Review 92(5): 1644–55.
- Kahneman, Daniel. 2003. "A Psychological Perspective on Economics." American Economic Review 93(2): 162–68.
- List, John A. 2004. "Neoclassical Theory Versus Prospect Theory: Evidence from the Marketplace." Econometrica 72(2): 615–25.
- Medvec, Victoria Husted, Scott F. Madey, and Thomas Gilovich. 1995. "When Less Is More: Counterfactual Thinking and Satisfaction among Olympic Medalists." Journal of Personality and Social Psychology 69(4): 603–10.
- Rabin, Matthew. 2000. "Risk Aversion and Expected-Utility Theory: A Calibration Theorem." Econometrica 68(5): 1281–92.
- Kőszegi, Botond, and Matthew Rabin. 2007. "Reference-Dependent Risk Attitudes." American Economic Review 97(4): 1047–73.
- Thaler, Richard. 1980. "Toward a Positive Theory of Consumer Choice." Journal of Economic Behavior & Organization 1(1): 39–60.
- Tom, Sabrina M, Craig R Fox, Christopher Trepel, and Russell A Poldrack. 2007. "The Neural Basis of Loss Aversion in Decision-Making Under Risk." *Science* 315(5811): 515–18.
- van de Kuilen, Gijs, and Peter P Wakker. 2011. "The Midweight Method to Measure Attitudes Toward Risk and Ambiguity." Management Science 57(3): 582–98.

جامعـة نيويورك ابوظـي

