

EXPERIMENTAL ECONOMICS BELIEFS AND UPDATING

Ernesto Reuben

جامعـةنيويورلك أبوظــــي
"í NYU ABU DHABI

EXPLICIT BELIEF UPDATING

posterior belief $=$ new evidence \times prior belief

EXPLICIT BELIEF UPDATING

$$
\begin{aligned}
& P(A \mid B)=\frac{P(B \mid A)}{P(B \mid A) P(A)+P(B \mid-A) P(-A) P(A)} \\
& \text { Bayes' }^{\prime} \text { rule }
\end{aligned}
$$

Are people Bayesian?

Consider this experiment (El-Gamal \& Grether 1995)

- There is one urn and two possible states of the world:

$$
\frac{6!}{3!3!}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{3}
$$

- You make six draws from the urn with replacement.

Is the state UP or DOWN?

$$
P(U \mid 3 b)=\frac{0.2195}{0.2105 \times 05} 0.5=0.413
$$

Are people Bayesian?

Consider this experiment (El-Gamal \& Grether 1995)

- There is one urn and two possible states of the world:

- You make six draws from the urn with replacement.

Is the state UP or DOWN?

$$
P(U \mid 3 b)=\frac{0.2195}{0.2195 \times 0.6+0.3125 \times 0.4} 0.6=0.513
$$

Are people Bayesian?

Breakdown of types

Base-rate neglect, 41\%
(EI-Gamal \& Grether 1995)

TOO MUCH OR TOO LITTLE UPDATING?

posterior belief = new evidence \times prior belief

posterior belief =

new evidence \times prior belief

Base-rate neglect / representativeness

- Too much weight on new information
- New information is consistent with important values/beliefs
- New information is salient and/or strong (even if inaccurate)
- New information produces affect

Conservativism

- Too little weight on new information
- New information is inconsistent with important values/beliefs
- New information is not salient and/or weak (even if accurate)
- New information lacks affect

LEARNING TO UPDATE

The Monty Hall problem

- Three doors: one has a price, the others have goats!
- Choose one door
- Monty opens a door with a goat
- Should you switch to the other door?

Probability of winning if you:
Switch $=2 / 3$
Do not switch $=1 / 3$

LEARNING TO UPDATE

Friedman (1998)

- 104 subjects play the Monty Hall game for 10 rounds earning $40 ¢$ if correct and 10c if wrong

- Play more rounds with higher incentives, advice, history, or earnings comparisons

Slembeck \& Tyran (2004)

- 93 subjects play the Monty Hall game for 40 rounds in control, competition (pay based on relative performance), or communication (decisions in groups of 3)

When is learning to update hard?

We tend to repeat actions that are rewarded and avoid those that are punished
\rightarrow problem when Bayesian updating \neq reinforcement learning

Reinforcement learning and Bayesian updating?

Charness \& Levin (2005)

- This experiment consists of ten rounds. In each round, you will be making draws from two urns: a left urn and a right urn. There are two possible states of the world: UP and DOWN.
- With 50% probability the state is UP. In this case,
- The left urn has four blue balls and two red balls
- The right urn has six blue balls
- With 50% probability the state is DOWN. In this case,
- The left urn has two blue balls and four red balls
- The right urn has six red balls

State DOWN ($p=1 / 2$)

Reinforcement learning and Bayesian updating?

Charness \& Levin (2005)

$1^{\text {st }}$ draw from the left

- Draw blue and win \$ © Switch to right (UP is more likely)
- Draw red and lose \$: Stay left
(DOWN is more likely)

State DOWN ($p=1 / 2$)

$1^{\text {st }}$ draw from the right

- Draw blue and win \$ © Stay right
(UP is certain)
- Draw red and lose \$ © Switch to left (DOWN is certain)

Reinforcement learning and Bayesian updating?

Results: 165 subjects where the $1^{\text {st }}$ draw either pays or does not pay (Charness \& Levin 2005)
$1^{\text {st }}$ draw from the left

- Draw blue and win \$ © 63\% switch to right

86\% switch without \$

- Draw red and lose \$: 44\% stay left
58% stay left without \$
47\% errors
28\% errors without \$

$$
\text { State UP }(p=1 / 2)
$$

$$
\text { State DOWN }(p=1 / 2)
$$

Right

$1^{\text {st }}$ draw from the right

- Draw blue and win \$ © 87\% stay right
- Draw red and lose \$: 96\% switch to left

8\% errors

Consequences of non-Bayesian updating

Winners curse

- Winners of common value auctions tend to bid too much and end up making a loss!
- Oil drilling in the Gulf of Mexico
- Between 1954 and 1969, there was an average present value loss of \$192k per lease; 62\% of leases were dry and 16\% were unprofitable
- 3G spectrum auctions

جامعـة نيويورلك ابـوظـبي
© NYU ABU DHABI

- 9 out of 13 winners had financial problems shortly after acquiring the
 spectrum rights
 vancouver 2010

- Olympics
- NBC lost \$223 million on the Toronto Winter Olympics even though they brought extra revenue and ratings were 14% better than previous games. NBC paid $\$ 820$ million for the rights to the games.

Consequences of non-Bayesian updating

Winners curse

- Winners of common value auctions tend to bid too much and end up making a loss!
- Possible explanations?
- Utility of winning (risk seeking)
- Wrong beliefs of other bidders' behavior
- Non-Bayesian updating

Bid should be considerably bellow one's estimate!

Winners to not fully take into account that if they win, it means they overestimated the value of the good

Consequences of non-Bayesian updating

Simplifying the winner's curse (Charness \& Levin 2009)

- An entrepreneur makes an offer for a patent that is worth P to the inventor and 1.5P to him/her. The entrepreneur's earnings are 1.5 P - offer if it is accepted and 0 if it is rejected. The inventor accepts the offer if it is greater than P. The inventor knows P but the entrepreneur only knows that P is drawn from a distribution with support [$\$ 0, \$ 99$].
What's the optimal offer? \$0!
- Implied lottery
- \$0 with $p=1$
- $\$ 0$ with $p=1 / 2$ and $-\$ 33$ with $p=1 / 2$
- $\$ 0$ with $p=1 / 2$ and $-\$ 66$ with $p=1 / 2$
- $\$ 49.5$ with $p=1 / 2$ and $-\$ 99$ with $p=1 / 2$

Consequences of non-Bayesian updating

Simplifying the winner's curse (Charness \& Levin 2009)

- 219 subjects, two parts of 30 periods each with either normal or detailed instructions
- Continuous \rightarrow Discrete (normal)
- Discrete \rightarrow Continuous (normal)
- Continuous \rightarrow Discrete (detailed)

	First 30 Normal	Second 30 Normal	First 30 Detailed	Second 30 Detailed
Avg. Bid	38.86	35.91	35.17	29.12
\% zeros	7.5%	20.9%	25.8%	40.1%

- Lottery

- Discrete \rightarrow Continuous (detailed)

Consequences of non-Bayesian updating

Simplifying the winner's curse (Charness \& Levin 2009)

- 219 subjects, two parts of 30 periods each with either normal or detailed instructions
- Continuous \rightarrow Discrete (normal)
- Discrete \rightarrow Continuous (normal)
- Continuous \rightarrow Discrete (detailed)

	First 30 Normal	Second 30 Normal	First 30 Detailed	Second 30 Detailed
Avg. Bid	57.08	59.87	52.93	36.21
\% zeros	30.4%	33.5%	38.5%	58.5%

- Discrete \rightarrow Continuous (detailed)
- Lottery

> | Results Lottery |
| :--- |
| 84.8% zero bids |

References

- Charness, Gary, and Dan Levin. 2005. "When Optimal Choices Feel Wrong: A Laboratory Study of Bayesian Updating, Complexity, and Affect." American Economic Review 95 (4) (September): 1300-1309.
- Charness, Gary, and Dan Levin. 2009. "The Origin of the Winner's Curse: A Laboratory Study." American Economic Journal: Microeconomics 1 (1) (February): 207-236.
- El-Gamal, Mahmoud A, and David M Grether. 1995. "Are People Bayesian? Uncovering Behavioral Strategies." Journal of the American Statistical Association 90 (432): 1137.
- Friedman, Daniel. 1998. "Monty Hall's Three Doors: Construction and Deconstruction of a Choice Anomaly" American Economic Review 88 (4) (September) 933-946.
- Slembeck, Tilman, and Jean-Robert Tyran. 2004. "Do Institutions Promote Rationality?" Journal of Economic Behavior \& Organization 54 (3): 337-50.

