Antisocial behavior

Antisocial punishment

Pervasiveness across societies

Conflict and rent seeking

- The darker side of cooperation
- Homo rivalis
- Conflict and peace

- The dark side of human behavior

Punitive games

Antisocial punishment

- Differences in punishment behavior Gächter & Herrmann 2007
 - Design
 - VCM: n = 3, e = 20, MPCR = 0.5, one-shot game, costs 1 to damage by 3, run in Switzerland and Russia

Antisocial punishment

- Antisocial punishment across societies Herrmann et al. 2008
 - Is punishment used and does it increase contributions in other societies?
- Design
 - VCM: n = 3, e = 20, MPCR = 0.5, partners matching, costs 1 to damage by 3
 - Treatments: punishment / no punishment
 - Run in various cities
 - Boston, Nottingham, Copenhagen, Bonn, Zurich, St. Gallen, Minsk, Dnipropetrovs'k, Samara, Athens, Istanbul, Riyadh, Muscat, Seoul, Chengdu, Melbourne

Punishment across societies

- Antisocial punishment across societies Herrmann et al. 2008
 - Punishment is pervasive but it does not always increase contributions
 - Works: Boston, Nottingham, Copenhagen, Bonn, Zurich, St. Gallen, Minsk, Seoul, Chengdu, Melbourne
 - Did not work: Dnipropetrovs'k, Samara, Athens, Istanbul, Riyadh, Muscat

Experimental Economics - Ernesto Reuben

Punishment across societies

• Antisocial punishment across societies Herrmann et al. 2008

- Failure of punishment is related to the amount of 'antisocial' punishment
- Punishment of (above average) cooperators
- If punished, cooperators
 tend to reduce contributions

- Why antisocial punishment? Mi
 - Revenge?
 - Spitefulness?

Mean punishment expenditures

Rent-seeking game

- Two (or more) parties compete for an exogenous prize *P*
- Both parties simultaneously exert effort e_i to try to win the prize
- Each party wins with a probability proportional to its effort share

$$Prob(i \text{ wins}) = \frac{e_i}{e_i + e_j}$$

- The (symmetric) equilibrium effort is: $e_i = e_j = \frac{1}{4}P$
- The expected payoff is $y_i \frac{1}{4}P + \frac{1}{2}P = y_i + \frac{1}{4}P$
- Rent-seeking model is used to analyze
 - Contests (e.g. architecture), promotion tournaments, lobbying, war and interstate conflict, charitable fundraising

- The dark side of cooperation Abbink et al. 2009
- Design
 - Rent-seeking contest in teams or individuals
 - Endowment per individual is 1000 tokens
 - Price per individual is 1000 tokens
 - Repeated for 20 periods, partners matching
 - Treatments
 - 1 vs. 1
 - 4 vs. 1
 - 4 vs. 4
 - 4. vs 4 with punishment within teams

- The dark side of cooperation Abbink et al. 2009
 - Both teams and individuals spends more effort than Nash
 - Teams spend much more than individuals (remember individual marginal incentives are the same)

Figure 1: Contest expenditures over time in the no-punishment treatments

Experimental Economics - Ernesto Reuben

- The dark side of cooperation Abbink et al. 2009
 - With punishment effort levels are even higher!
 - Is this due to the will of a few aggressive individuals or a team effort?

Figure 4: Contest expenditures over time in the 4:4 and 4:4P treatments

Experimental Economics - Ernesto Reuben

- Rent-seeking and antisocial preferences Herrmann & Orzen 2008
- Design
 - Rent-seeking contest between two individuals
 - Endowment per individual is \$16 and the price is \$16
 - One shot game (part 1) + 15-period repeated game (part 2)
 - Treatments
 - Direct: standard game
 - Strategy: individuals can condition of the other's investment
 - Individual: individuals can condition of the other's investment but the other is a computer

- **Rent-seeking and antisocial preferences** Herrmann & Orzen 2008
 - Investments are well above the Nash equilibrium
 - Highest under direct and strategy

	Direct	Strategy	Individual
Part 1	9.6 (4.4)	8.8 (4.4)	4.7 (4.4)
Part 2 (last 5 periods)	8.2 (4.9)	7.3 (4.4)	5.2 (4.6)

- **Rent-seeking and antisocial preferences** Herrmann & Orzen 2008
 - Conditional choices in strategy are well above those in individual and the Nash best-response

• Rent-seeking and antisocial preferences Herrmann & Orzen 2008

- Types: most individuals can be classified as having increasing or humpshaped conditional responses
- Hump-shaped under strategy spend more than under individual

Figure 4: Average response schedules in Strategy and Individual by type

Conflict games

- Conflict game
 - Two parties compete for the endowment of the other party
 - Both parties simultaneously invest in conflict c_i to try to win
 - Each party wins with a probability proportional to its effort share

$$Prob(i \text{ wins}) = \frac{c_i}{c_i + c_j}$$

- The (symmetric) equilibrium effort is: $c_i = c_j = \frac{1}{4}(y_i + y_j)$
- The expected payoff is $\frac{1}{2}[y_i \frac{1}{4}(y_i + y_j) + y_j \frac{1}{4}(y_i + y_j)] = \frac{1}{4}(y_i + y_j)$

Conflict games

- **Repeated interaction and achieving peace** Lacomba et al. 2009
- Design
 - Conflict game with two individuals
 - Endowment per individual is 1000 tokens
 - Two sets of 10 periods: partners (part 1) strangers (part 2) matching
 - Two changes
 - Endogenize taking by the winner
 - Peace is possible: if $c_i = c_j = 0$ then there is no conflict

Conflict games

• **Repeated interaction and achieving peace** Lacomba et al. 2009

- Overinvestment in conflict by strangers and underinvestment by partners
- Average take rates are 98.1% by strangers and 81.1% by partners
- Peace rates are 0.0% by strangers and 26.3% by partners

Experimental Economics - Ernesto Reuben

Dynamics of Peace

Dynamics of Peace

Dynamics of Peace

- How do groups manage to coordinate?
 - 25% start their peaceful relationship from period 1.
- Peace after conflict (75% start fighting but achieve peace)
 - In *all* cases, the first period of peace is preceded by a period in which one subject does not fight.
 - Not fighting gives a 16% chance of peace
 - In addition to not fighting
 - Low take rate gives 14% higher chance of peace

The dark side of human behavior

- The bright side of human behavior
 - Intrinsically cooperative *Homo reciprocans*
 - Sacrifices own payoff for the benefits of others
- The selfish side of human behavior
 - Selfish and rational *Homo economicus*
 - Does not care about other's as long as they do not affect him
- The dark side of human behavior
 - Intrinsically spiteful *Homo rivalis*
 - Sacrifices own payoff to maximize his relative standing
 - These motives pose a problem for people's reputation. Compared to prosocial behavior, such behavior is keen to hide itself.

The dark side of human behavior

- The emperor game Abbink 200?
 - Two players, each with 10 tokens
 - Both players decide simultaneously whether or not to reduce the partner's income by 5 tokens (costs 1 token)
 - Hidden version: There is a 1/6 probability that the experimenter takes 5 tokens from the partner

